Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластинки Колебания изгибные — Уравнения

Уравнения (9)—(11) представляют собой уравнение колебаний, граничные условия и соотношения непрерывности для пластинки, показанной на рис. 1(b), изгибные цилиндрические жесткости которой Pxi, H i, D yi и Dll определяются из уравнения (12). Жесткость единицы длины упругой сопротивляющейся среды на сторонах л = Оил =аи у = О п у = Ь также находится из уравнения (13). Таким образом, можно заключить, что собственная частота колебаний пластинки, показанной на рис. 1(a), совпадает с собственной частотой колебаний пластинки, показанной на рис. 1(b), при условии существования соотношений между обеими пластинками, определяемых уравнениями (12) и (13). Вывод показывает, что обобщенный метод преобразования, предложенный для пластинки постоянной толщины [6, 7], также может быть применен для пластинки переменной толщины, показанной на рис. 1. Из этого метода непосредственно вытекают три следующих факта.  [c.160]


Уравнение свободных изгибных колебаний такой пластинки имеет вид  [c.93]

Уравнение параметрических колебаний круглой пластинки, защемленной по контуру и сжимаемой в срединной плоскости периодическими силами. Уравнение изгибных колебаний для этой задачи (рис. 5) имеет вид  [c.353]

Уравнение колебаний изгиба пластинки, в срединной плоскости которой действуют начальные усилия. Пусть в плоскости пластинки действуют усилия Ыц, Л гг и Тогда дифференциальное уравнение изгибных колебаний пластинки будет иметь вид  [c.372]

Будем рассматривать малые изгибные колебания однородных анизотропных пластин постоянной толщины, ограниченных простым контуром. Изгибные деформации, возникающие при колебаниях, будем предполагать малыми упругими подчиняющимися обобщенному закону Гука. Такие колебания описываются дифференциальными уравнениями, аналогичными дифференциальным уравнениям изгиба. Принципиальным отличием их является зависимость внепшей нагрузки, а следовательно, функций деформаций tp, я з и прогиба пластинки ы от времени, а также наличие дополнительных членов, которые определяют инерционную нагрузку.  [c.88]

Весьма сложными являются задачи о дифракции звука на полубесконечных упругих пластинах. Они не имеют аналогов в теории дифракции электромагнитных волн. К настоящему времени известны лишь решения для тонкой упругой пластаны, движение которой описывается уравнением изгибных колебаний [4, 26, 33, 39].  [c.130]

СКОЛЬКО работ. Так, в работе [31] приведены результаты изучения собственных поперечных колебаний тонких ортотроп-ных эллиптических пластинок с аналогичным эквидистантным вырезом. Теоретический анализ осуществлен с использованием метода Ритца. При этом проведено преобразование эллиптической пластинки в кольцевую с единичным внешним радиусом путем перехода к новой системе координат. Кольцевая круговая пластинка разбита на ряд секторов. Поперечные перемещения аппроксимируются рядами произведений приемлемых функций секториальнрй балки с малым углом конусности в плане на тригонометрические функции угловой координаты. Перемещения в направлении радиальной координаты аппроксимируются полиномами пятой степени, которые удовлетворяют основному уравнению изгибных колебаний балок.во всех точках внутри выделенного малого элемента и граничным условиям на его концах. В результате цроведенного исследования определены собственные числа и формы собственных колебаний для некоторых образцов изотропных эллиптических и круговых пластинок с подобными центральными вырезами. Для апробации полученных авторами результатов в работе дано сопоставление с результатами точных решений и результатами других авторов, полученных для частных случаев. ,  [c.293]


На базе асимптотического метода В. В. Болотиным (1963, 1966) изучены плотности собственных частот пластинок и пологих оболочек им показано суш ествование точек сгущения спектра изгибных колебаний, причем у оболочек неотрицательной кривизны имеется одна такая точка, а у оболочек отрицательной кривизны — две. Точки сгущения спектра собственных колебаний находятся при частотах СО1 = с Яа и а = = 1 с Щ I (при последней только в случае оболочек отрицательной кривизны) в этих выражениях с — скорость распространения волн сжатия растяжения в оболочке координатная сетка на срединной поверхности установлена так, что -йа I < I 1> причем Др — главные радиусы кривизны. Эмпирические данные, извлеченные из анализа сферических и круговых цилиндрических оболочек, подтверждают теоретические результаты. Тем не менее любопытно, что при указанных частотах характеристические линии уравнений безмоментных изгибных колебаний являются кратными однако кратные характеристики появляются и у оболочек положительной кривизны при частотах 0)1 и 0)3 (у сферической оболочки эти значения совпадают). Вопрос о связи между этими явлениями еще ждет ответа. Отметим здесь, что впервые исследования об асимптотическом поведении собственных частот колебаний цилиндрических и пологих оболочек проводились С. А. Терсеновым (1955).  [c.251]

Уравнение пао метрическнх колебаний круглой пластинки, защем- еиной по контуру н сжимаемой в срединной плоскости периодическими силами, Уравне 1ме изгибных колебаний для эюй задачи (рис. 5) имеет вид  [c.353]


Смотреть страницы где упоминается термин Пластинки Колебания изгибные — Уравнения : [c.43]    [c.143]    [c.55]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.372 , c.373 , c.401 , c.403 ]



ПОИСК



Изгибные Уравнения

Колебания Уравнения колебаний

Колебания изгибные

Колебания пластинок

Пластинки Пластинки Уравнения



© 2025 Mash-xxl.info Реклама на сайте