Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ФАЗОВАЯ КРОСС-МОДУЛЯЦИЯ (ФКМ)

ФАЗОВАЯ КРОСС-МОДУЛЯЦИЯ (ФКМ)  [c.172]

Фазовая кросс-модуляция 177  [c.177]

Фазовая кросс-модуляция  [c.179]

Фазовая кросс-модуляция 181  [c.181]

Фазовая кросс-модуляция 183  [c.183]

Фазовая кросс-модуляция 193  [c.193]

Фазовая кросс-модуляция 195  [c.195]

Фазовая кросс-модуляция 199  [c.199]

Фазовая кросс-модуляция 203  [c.203]

Фазовая кросс-модуляция 211  [c.211]

Фазовая кросс-модуляция 213  [c.213]

Фазовая кросс-модуляция 215  [c.215]

Вынужденное комбинационное рассеяние (ВКР)-нелинейный процесс, который позволяет использовать световоды в качестве широкополосных ВКР-усилителей и перестраиваемых ВКР-лазеров. Но, с другой стороны, этот же процесс может резко ограничить характеристики многоканальных оптических линий связи из-за переноса энергии из одного канала в соседние каналы. В этой главе рассматриваются как применения ВКР, так и паразитные эффекты, связанные с ним. В разд. 8.1 представлены основы теории комбинационного рассеяния, причем подробно обсуждается понятие порога ВКР. В разд. 8.2 рассмотрено ВКР непрерывного или квазинепрерывного излучения. Там же обсуждаются характеристики волоконных ВКР-лазеров и усилителей и рассматриваются перекрестные помехи в многоканальных оптических линиях связи, обусловленные ВКР. ВКР сверхкоротких импульсов (СКИ), возникающее при импульсах накачки длительностью менее 100 пс, рассмотрено в разд. 8.3 и 8.4. В разд. 8.3 рассматривается случай положительной дисперсии групповых скоростей, а разд. 8.4 посвящен изучению солитонных эффектов при ВКР, возникающем в области отрицательной дисперсии групповых скоростей волоконного световода. Особое внимание уделено совместному действию дисперсионного уширения импульса с фазовой самомодуляцией (ФСМ) и фазовой кросс-модуляцией (ФКМ).  [c.216]


Расстройка групповых скоростей является дисперсионным эффектом первого порядка и, как правило, доминирует над дисперсионным расплыванием импульсов. Тем не менее существует ряд важных случаев нелинейного взаимодействия волн, протекающего в условиях группового синхронизма. С одним из таких случаев мы столкнемся в 3.6, рассматривая комбинационное преобразование частоты сверхкоротких импульсов в волоконных световодах. Здесь в процессе генерации стоксова импульса принципиальную роль играет совместное проявление дисперсии групповой скорости и фазовой само- и кросс-модуляции взаимодействующих волн. Яркое проявление этих эффектов — генера-  [c.111]

ТО совместное проявление фазовой самомодуляции и дисперсии приводит к расплыванию импульса накачки и снижает эффективность энергообмена. К аналогичному результату приводит и взаимное влияние импульсов на основной и стоксовой частотах через нелинейную добавку к показателю преломления — кросс-модуляция. Результирующая длительность стоксова импульса заметно превышает исходную длительность накачки (рис. 3.17), кроме того, стоксов импульс имеет зна-  [c.142]

Зависимость показателя преломления от интенсивности приводит к множеству интересных нелинейных эффектов. Два наиболее широко изученных эффекта-это фазовая самомодуляция (ФСМ) и фазовая кросс-модуляция (ФКМ). ФСМ обусловлена самонаведенным набегом фазы, который оптическое поле приобретает при распространении в волоконном световоде. Его величину можно получить, заметив, что фаза оптического поля изменяется как  [c.24]

Когда две и более оптические волны вместе распространяются по световоду, из-за нелинейности световода они могут взаимодействовать друг с другом. Вообще, в результате этого за счет таких эффектов, как вынужденное комбинационное рассеяние, вынужденное рассеяние Мандельштама Бриллюэна, генерация гармоник, четырехволновое смешение, при определенных условиях могут возникать новые волны все эти процессы рассматриваются в гл. 8-10. В то же время нелинейность световода вызывает взаимодействие между распространяющимися волнами за счет эффекта, называемого фазовой кросс-модуляцией (ФКМ). ФКМ всегда сопровождается фазовой самомодуляцией (ФСМ) и возникает из-за того, что эффективный показатель преломления какой-либо волны зависит не только от интенсивности самой этой волны, но и от интенсивности других волн, распространяющихся с ней совместно [1, 2].  [c.172]

Обсудим еще один возможный механизм уширения спектра — фазовую кросс-модуляцию. Применительно к нелинейной оптике этот эффект впервые анализировался в [55]. Суть его состоит в следующем. При одновременном распространении в кубичной среде на разных частотах слабого и интенсивного коротких импульсов последний вызывает изменение фазы слабого импульса. Фазовая кросс-модуляция, подобно эффекту самомодуляции, приводит к уширению спектра слабого импульса. В [56] рассчитано индуцированное сверхуширение спектра слабой второй гармоники, обусловленное мощным импульсом основного излучения в кубичной среде. Эксперименты по индуцированному спектральному уширению выполнены в [57]. Импульс основного излучения (Л=1060 нм) имел длительность 8 пс и максимальную энергию 2 мДж, энергия слабого импульса второй гармоники ( 2=530 нм) составляла 80 мкДж. Распространение в стекле одного лишь импульса второй гармоники приводило к незначительному уширению спектра. Наличие же интенсивного основного импульса сопровождалось сверх-уширением спектра второй гармоники.  [c.93]


Здесь на первый план выходят эффекты, связанные с совместным проявлением фазовой само- и кросс-модуляции, дисперсии и комбинационного преобразования частоты. Математические модели этих процессов, учитывающие изменение показателя преломления в поле высокоинтенсивных импульсов, сформулированы в [51] в первом приближении теории дисперсии и обобщены в [52]. Для импульсов с начальной длительностью в единицы пикосекунд усиление можно считать стационарным, а систему уравнений (5), записанную с учетом са-мовоздействия, представить в виде  [c.141]

В последнее время наметились перспективы компрессии импульсов среднего ИК диапазона. Они связаны с совершенствованием волоконных световодов на основе халькогенидных и флюоридных стекол, которые можно будет использовать для создания частотной модуляции, и прямыми экспериментальными наблюдениями сильной фазовой само-модуляции ИК импульсов в полупроводниках [90], что позволяет реализовать их последующее сжатие в дисперсионных линиях задержки. Дополнительные возможности появляются при использовании эффекта кросс-модуляции. С помощью мощного возбуждающего ИК импульса, частота которого близка к резонансной, в полупроводнике индуцируются быстрые и значительные изменения показателя преломления, приводящие к частотной модуляции длинноволнового импульса.  [c.279]


Смотреть страницы где упоминается термин ФАЗОВАЯ КРОСС-МОДУЛЯЦИЯ (ФКМ) : [c.46]    [c.159]    [c.193]    [c.209]    [c.279]   
Смотреть главы в:

Нелинейная волоконная оптика  -> ФАЗОВАЯ КРОСС-МОДУЛЯЦИЯ (ФКМ)



ПОИСК



Кросс

Модуляция

Модуляция фазовая



© 2025 Mash-xxl.info Реклама на сайте