Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал перемещений векторный

Приводим общую форму частного решения, данную Кельвином. Выразим вектор перемещения при помощи скалярного потенциала Ф и векторного потенциала i j формулой  [c.223]

Последнее условие является калибровочным оно уменьшает произвол в выборе векторного поля о ). Можно показать, что разложение (2.12.6) полное, а также что ф — скалярный потенциал расширения, тр — векторный потенциал поля вектора вращения, когда и — не что иное, как поле перемещений. Действительно, с учетом второго уравнения (2.12.6) имеем  [c.139]


Скалярный потенциал ф, вообще говоря, связан с векторным потенциалом г1зг через граничные условия, что приводит к значительным математическим осложнениям. Несмотря на это, разложение перемещений вида (60) упрощает исследование, поскольку решение задачи с начальными и граничными условиями можно найти подбором подходящих частных решений уравнений (61а) и (616), выраженных через произвольные функции или интегралы от произвольных функций. Если эти функции можно подобрать так, чтобы удовлетворялись и граничные, и начальные условия, то тем самым будет получено точное решение. Это решение является единственным в силу теоремы  [c.395]

ИЗ которой можно вывести уравнения, описывающие движение среды. Здесь были приняты во внимание три пространственные (декартовы) координаты и п переменных величин г[( К В общем случае класс этих переменных величин, обычно называемых переменными поля, не ограничивается перемещениями, как в рассмотренной задаче теории упругости. Оказывается, например, что этот метод пригоден для описания электромагнитного поля, в котором имеется не менее четырех переменных поля, соответствующих скалярному потенциалу <р и трем компонентам векторного потенциала А. Этот вопрос будет подробнее освещен в гл. XI после рассмотрения в гл. X элементарных основ теории относител ьности.  [c.121]

Если упругая среда находится в условиях плоской деформации в плоскости OXiX , то U -е = О и векторный потенциал Ф представляется в виде Ф =, где Ч = (xj, х , t) — скалярная функция. Тогда вместо уравнений (1.8) получим систему двух скалярных уравнений (3.62). В полярных координатах г, 0 компоненты вектора перемещений и тензора напряжений выражаются через потенциалы Ф, посредством формул  [c.71]

Реп1ение уравнений равновесия в форме, данной Кельвином. В этом параграфе будет выведена общая форма частного решения векторного уравнения упругого равновесия. С этой целью разложим вектор перемещения по методу Кельвина ). Выразим перемещение через скалярный потенциал (р и векторный потенциал / по формуле  [c.152]

Существенное внимание уделяется общим методам решения проблем теории упругости. При рассмотрении дифференциальных уравнений Навье в перемещениях вводятся векторный и скалярный потенциалы, потенциал Ламе, вектор Буссинеска, вектор Папковича. Анализируя дифференциальные уравнения в напряжениях Бельтрами — Мичелла, автор вводит функции напряжений Максвелла и Мореры. Подробно показано применение обратного и полуобратного методов Сен-Венана.  [c.6]


При применении потенциала деформаций Ламе перемещения представляются первыми производными одной скалярной функции. Однако более общие решения, имеющие широкие приложения, можно получить, если ввести производные высшего порядка от векторной функции. В уравнениях Навье присутствуют два дифференциальных оператора второго порядка, не зависящих от направления координат. Это, видимо, навела Б. Г. Галёркина [15] ) на мысль представить общее решение в форме  [c.106]

В дополнении даны основные уравнения динамической теории упругости, кото]рые использованы в основном тексте монографии. Приведены уравнения движения в перемещениях, сформулированы граничные и начальные условия. Представлено решение в виде скалярного и векторного потенциала. О юрмулирован1 вариационные принципы динамической теории упругости и теорема взаимностн, а также приведена формула Сомилианы. Рассмотрены гармонические колебания  [c.7]


Смотреть страницы где упоминается термин Потенциал перемещений векторный : [c.401]    [c.114]   
Теория упругости и пластичности (2002) -- [ c.268 ]



ПОИСК



Векторные

Потенциал векторный

Потенциал векторный векторный

Потенциалы перемещений



© 2025 Mash-xxl.info Реклама на сайте