Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разностная схема трехслойная

Разностная схема (1.15) включает в себя значения сеточной функции на трех временных слоях Ь = tn-l t = tn и t = tn+l Поэтому такую схему еще называют трехслойной.  [c.8]

Для численного интегрирования уравнений пространственного турбулентного пограничного слоя в работе [44—45] использован конечно-разностный метод повышенной степени точности,, предложенный для двумерных задач в работе [30]. Этот метод получил широкое применение при исследовании течений в двумерных ламинарных и турбулентных пограничных слоях [26]. Численный метод обеспечивает повышенный (четвертый) порядок точности интегрирования по нормальной к поверхности координате.. Используются граничные условия общего вида, при этом порядок точности интегрирования и вычислительный алгоритм остаются однородными. В направлениях, касательных к поверхности, задаются также неравномерные интервалы интегрирования в зависимости от интенсивности перестройки течения. Конечно-разностная схема основывается на двух- и трехслойных пространственных, шаблонах.  [c.333]


Аппроксимационные отношения представляются в общем виде для двух- и трехслойных неявных разностных схем выражениями  [c.334]

Из большой группы способов интегрирования системы (2.51) остановимся на использовании наиболее простых двухслойных и трехслойной схем. При конечно-разностной аппроксимации Т на к-м интервале времени = fjt - получим двухслойную схему  [c.45]

Порядок проведения численной проце,цуры, связанный с правилом перебора ячеек рассматриваемой области, подробно описан в работе. Там е, на примере модельного уравнения проведен анализ устойчивости дву Сло,.ного по времени неявного разностного оператора. Следует отметить, что применение трехслойной по времени неявной разностной схемы (9) по сравнению с двухслойной позволило увеличить допустимый шаг по времени Г в 2 раза. При этом величина г практически не зависала от способа аппроксимации плотностей Т.  [c.28]

Разностную схему для определения разностного решения будем по-прежнему строить, заменяя в уравнении (3.1) и граничных условиях (3.2), (3.3) производные конечными разностями. Рассмотрим аппроксимацию производной по времени. В принципе для построения соотношений, аппроксимирующих временную производлую, в /-Й момент времени можно использовать значения температур в различные моменты времени Т , Ti ,. ... Однако на практике в подавляюще.м большинстве случаев используются только значения температуры в /-й и (/ 1 -и моменты времени. Такие схемы называются двухслойными (повремени). Значительно реже учитывают значение температуры в (/ — 2)-й момент времени и получают трехслойные схемы. Дальше мы будем рассматривать только двухслойные схемы. В этом случае производную по времени аппроксимируют разностью назад  [c.79]

В главе рассматривается построение одномерных дискретных моделей, устанавливаются связи с соответствующими континуальными моделями. С помощью первого дифференциального приближения полученных разностных схем показано, что они обладают нулевой матрицей вязкости, т. е. построенные разностные схемы для упругого закона не обладают какой-либо схемной вязкостью и не вносят численной диссипации. Проанализированы численные результаты по распространению одномерных волн в одно-, двух- и трехслойных пакетах. Для сглаживания ударно-волновых профилей использована линейная и квадратичная искусственная вязкость Неймана — Рихтмайера. Рассмотрена модификация схемы распада — разрыва, уменьпхающая схемную вязкость. Приведены численные результаты по распространению одномерных волн в слоистых пакетах и моделированию их разрупхения.  [c.109]


Разностная схема Адамса — Бэшфорта, использованная Лилли [1965] для уравнения, содержащего только конвективный член, является явной одношаговой трехслойной по времени схемой с разностями вперед по времени она имеет ошибку 0(А/ , Ал 2). Ее можно интерпретировать как конечно-разностную аппроксимацию второй производной по времени.  [c.115]

Разностная схема Адамса — Бэшфорта, использованная Лилли [1965] для уравнения, содержащего только конвективный член, является явной одношаговой трехслойной по времени схемой с разностями вперед по времени она имеет ошибку  [c.115]

При конечно-разностной аппроксимации Т в (2.51) на сдвоенном интервале времени 2At = 2 при условии + tjt 2)/2 получим трехслойную схему  [c.47]

Конечно-разностное представление Дюфорта — Франкела, рассмотренное для диффузионных членов, можно использовать II в сочетании с другими трехслойными схемами для конвективных членов, но при этом каждый раз необходимо исследовать устойчивость полного уравнения. Единственной другой одношаговой явной абсолютно устойчивой схемой для уравнения диффузии является одна из схем Саульева (Саульев [1964], Рихтмайер и Мортон [1967], Карнахан и др. [1969] см. также разд. 3.1.17). Как показывает неопубликованное исследование автора, этот подход оказался неприменимым к полному уравнению, включающему конвективный и диффузионный члены. При применении любой из этих схем к конвективным членам для любого числа Куранта С > О получается то же ограничение на щаг по времени, которое определяется диффузионным членом для простой схемы с разностями вперед по времени и центральными разностями по пространственной переменной. Кроме того, схема Саульева в действительности оказывается неявной по граничным условиям, которые требуют особого рассмотрения при гидродинамических расчетах.  [c.99]

Внешнее течение на остром конусе, как показывают экспериментальные данные, является коническим др/д = 0) и задано в соответствии с данными работы [37]. Сравнение численных результатов для продольной u Ve, поперечной со/ е составляющих скорости и температуры Т/Те с экспериментальными данными приведено на рис. 6.9 для значения углов т]=135° и / =0,85 (г— расстояние по оси конуса). Пунктиром нанесены численные результаты работы [37], в которой используется модель турбулентной вязкости Ван Дриста. Аппроксимация производных в касательной плоскости осуществлялась по двум и трем расчетным узлам. Расчеты показали, что использование трехслойных разностных шаблонов позволяет получить результаты с большей точностью, чем двухслойные схемы, и значительно сократить число расчетных узлов шаг интегрирования Дт]=5° дает приемлемую точность почти во всем поле течения, за исключением области, близкой к области отрыва. Интегрирование по координате производилось на существенно неравномерной сетке, шаг интегрирования значительно изменялся от поверхности до внешней границы. Высокий порядок точности аппроксимации в нормальном к поверхности направлении и неравномерная сетка позволяют получить численное решение, хорошо согласующееся с экспериментальными данными на сравнительно небольшом числе расчетных узлов (/= =48).  [c.344]


Смотреть страницы где упоминается термин Разностная схема трехслойная : [c.25]    [c.209]    [c.178]    [c.177]    [c.151]    [c.99]   
Численные методы газовой динамики (1987) -- [ c.78 ]



ПОИСК



Разностная схема

Тон разностный

Трехслойная схема



© 2025 Mash-xxl.info Реклама на сайте