Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий окислы

В атмосфере воздуха и кислорода при температурах более 200 °С ниобий окисляется с азотом взаимодействует при температуре выше 400 °С. При 20 °С ниобий поглощает до 104 см г водорода при температуре более 1000 °С водород практически ие растворяется. С углеродом при высоких температурах ниобий образует карбид  [c.100]

При сварке обычно применяют сварочные электроды, содержащие ниобий, а не титан. Последний окисляется при повышенных температурах, и имеется опасность, что его содержание уменьшится и окажется недостаточным для стабилизации свариваемого сплава. Потери ниобия в результате окисления меньше.  [c.307]


Безокислительные условия горячей и теплой деформации ниобия, тантала, титана, циркония, ванадия, хрома (вторая группа) не обеспечиваются при технически допустимом вакууме, так как они обладают низкой упругостью диссоциации окислов. Однако анализ кинетики окисления показывает, что при переходе к низкому вакууму скорость протекания реакций окисления резко уменьшается. Поэтому изменение глубины вакуума должно вызвать изменение толщины и свойств окисной пленки на металле (см. рис. 278).  [c.527]

При изучении влияния различных дисперсных частиц окислов и карбидов, осаждаемых совместно с электролитическим никелем, на величину внутренних напряжений и наводороживание были исследованы окислы алюминия и циркония, карбиды вольфрама, кремния, ниобия, титана и хрома, добавляемые в одинаковом количестве (1 %) в сульфатно-хлоридный электролит следующего состава  [c.106]

По полученному уравнению рассчитывалась межфазная поверхностная энергия при растекании жидких окислов алюминия, тантала, титана, ниобия, ванадия, молибдена и вольфрама по поверхности УУ, Мо, Та и N6. При расчетах использовалось представление о том, что на контактной поверхности происходит восстановление наносимого жидкого окисла до низшего (или до металла) и окисление тугоплавкого металла. Необходимые табличные данные заимствовались из работ [10, 11]. Известно [12], что поверхностная энергия жидких вольфрама, молибдена и тантала составляет соответственно 2300, 2080 и 1910 эрг/см , а жидкого ниобия — 2030 эрг/см [13]. По этим значениям рассчитывались значения поверхностной энергии твердых металлов при соответствующей температуре, причем предполагалось, что при затвердевании о., = 1.15а [14], а в твердом состоянии ——0.1 эрг/см .  [c.312]

В соответствии с теоретическими расчетами, наблюдается полное растекание жидких окислов титана,ванадия, молибдена и вольфрама. Пятиокись тантала образует каплю с конечным краевым углом на тантале, но полностью растекается по вольфраму й молибдену, несмотря на то, что реакция взаимодействия жидкой пятиокиси тантала с этими металлами термодинамически сильно затруднена. Подобное поведение характерно и для пятиокиси ниобия.  [c.313]

После нанесения окиси алюминия на тантал и ниобий, она приобрела черный цвет, что свидетельствует об образовании дефицитной структуры. Цвет окиси алюминия, нанесенной на вольфрам и молибден, не меняется, так как происходит разложение окиси алюминия этими металлами вследствие очень высокой летучести их окислов.  [c.314]

Процессы происходят и при других способах изготовления например, при изготовлении композита путем пропитки расплавленным металлом вместо механического сдвига, возможно, происходит высокотемпературная эрозия. Третий тип разрушения окисной пленки — ее растворение. Растворимость кислорода в алюминии исчезающе мала, но в таких металлах, как никель, она достаточно велика, чтобы привести к растворению окислов или обеспечить их сфероидизацию по растворно-осадительному механизму. Растворимость кислорода в таких металлах, как титан и ниобий, очень высока, и механизм растворения может создать условия для полного отсутствия окислов на поверхностях раздела.  [c.34]


Стойкость против коррозии ниобия и его сплавов определяется не столько свойствами самого металла, сколько свойствами его окисла, в данном случае Nb О s.  [c.73]

Пятиокись ниобия (Nb Os) является полупроводником п типа с недостатком анионов (т.е. кислорода) в кристаллической решетке. Элемент с более высокой валентностью, например Мо, должен снижать проводимость окисной пленки, так как для сохранения нейтральности окисла количество вакантных мест в решетке должно уменьшаться (что равнозначно уменьшению отношения Me О). Введение элементов с меньшей валентностью (Ti, Zr) приводит к увеличению отношения Me О, т.е. число дефектных мест в решетке и проводимость сплава при этом будут возрастать.  [c.73]

Когда речь идет о высокотемпературных конструкциях, куда входят молибден, вольфрам, ниобий и тантал с температурой плавления 2620, 3380, 2468 и 2996°, удивляешься тому, что природа наградила их, если так можно выразиться, ахиллесовой пятой — ведь все они начинают окисляться при довольно низкой температуре. При 300° на поверхности молибдена образуется светло-синий, а при 600° — темно-синий окисный слой, плотно прилегающий к поверхности металла. В температурном интервале 200—400° это в основном трехокись молибдена, а при температуре 400—650° окисная пленка состоит уже из двуокиси молибдена. При 705° она интенсивно улетучивается, в результате чего поверхностный слой разрыхляется, открывая доступ кислорода к металлу.  [c.137]

К числу жаростойких материалов относятся тугоплавкие металлы вольфрам, молибден, ниобий и некоторые другие. Все они очень сильно окисляются, что затрудняет их применение без специальной защиты, которую трудно создавать, они практически не могут быть использованы. Температура плавления многих из неметаллических тугоплавких материалов превосходит, и иногда значительно, 3000 °С.  [c.288]

Обладает высокими антикоррозионными свойствами, но меньшими, чем у тантала (в различных агрессивных средах). Компактный металлический ниобий не изменяется при нормальной температуре на воздухе, при нагревании начинает окисляться. При низких значениях температуры образуется тонкая, прочно пристающая пленка. При повышенных температурах реагирует с газами  [c.352]

Низкая пластичность самого ниобия, вероятно, вызвана окислением, так как на поверхности чистого ниобия виден темный слой окислов.  [c.104]

Ниобий апергичио взаимодействует с газами при высокой температуре. Ом легко окисляется иа воздухе при температуре выше 200° С, В интервале температур 200—400° С ниобий окисляется на воздухе с oбpaзoвaннei I пленки, состоящей из низших окислов N1)0 п N1)02, а ири температуре 400—500° С имеет место иереход нпзшпх окислов в окисную пленку НЬгОа последняя пориста и нс защищает металл от окисления.  [c.291]

Влияние ниобия на окисление вольфрама [656] при Г090 и 1260°С иллюстрируется на рис. 102. При содержании ниобия до 10% (ат.) сплав окисляется при 1090° С главным образом по линейной зависимости, но по параболической при 1260° С. Сплавы вольфрама с содержанием свыще 15% (ат.) ниобия окисляются согласно параболической зависимости при обеих температурах. Добавки к вольфраму соответственно кобальта, титана, циркония, ванадия и хрома в количестве 57о (ат.), а также молибдена до 10% оказались бесперспективными.  [c.317]

И в этом случае серьезной помехой является тенденция ниобия окисляться на воздухе при порышенных температурах. Попытки  [c.162]

Наиболее перспективными сплавами для работы в интервале 1000—1400° С являются, по-видимому, сплавы на основе молибдена и ниобия, а для работы при более высоких температурах — сплавы тантала и вольфрама. При температурах выше 600" С тугоплавкие металлы, за исключением хрома и некоторых металлов платиновой группы, интенсивно окисляются (рис. 77) и охруп-чиваются растворяющимся кислородом.  [c.117]

Бартч и Ньюджинс [132] провели исследования с целью выработки рекомендаций по покрытиям для тугоплавких сплавов ниобия, тантала и молибдена, являющихся наиболее перспективными конструкционными материалами, например для теплозащитных узлов возвращаемых ступеней космических аппаратов или для двигательных установок последних. Обладая достаточно высокими прочностными характеристиками при температуре 1660 К и выше, они очень быстро окисляются в атмосфере, если не защищены специальными покрытиями. Жизнеспособность этих покрытий уменьшается с ростом температуры и уменьшением давления. Поэтому необходимо держать систему металл — покрытие как можно при более низкой температуре. Этого можно достигнуть, увеличив излучательную способность наружной поверхности.  [c.206]


Численные решения получить для пяти вариантов, в которых в качестве материала носового профиля выбраны берилий, вольфрам, молибден, ниобий и титан. Считать, что носовые профили заш,иш,ены от химического воздействия набегающего потока специально нанесенной пленкой окислов. Начальная температура в профиле 15° С, степень черноты  [c.269]

Терморезистивная керамика янляется полупроводником с большим положительным значением температурного коэффициента сопротивления. Ее изготовляют на основе твердых растворов титанатов бария и стронция, титаната и станната бария, у которых точка Кюри по сравнению с титанатом бария смещена в сторону низких температур. Вводимые добавки некоторых окислов (ниобия, сурьмы и др.) действуют в этой систше как доноры, способствующие появлению электронной электропроводности. При переходе температуры через точку Кюри происходит существенное изменение структуры материала, вызывающее сильное падение электрической проводимости. Применяются эти материалы в различных устройствах стабилизации тока, ограничения и регулирования температуры и др.  [c.242]

Тантал и ниобии устойчивы на возду.хе при обычной температуре. Некоторое окисление (пленки побежалости) наблюдается при нагрованни металлов д.-> 200—300 С. Выше 500" С происходит быстрое окисление с образованием окислов ЫЬгОб и Ta Os. Данные коррозии тантала и ниобия иа ноздухе при повышен-ны.х температурах приведены в табл. 72.  [c.504]

Менее устойчивы металлы в щелочах. Горячие растворы едких щелочей заметно растворяют тантал и ниобий, они быстро окисляются в расплавленных щелочах и образуют натриевые нлн калиевые соли пиобневпй и танталовой кислот. В табл. 76 приведены результаты испытания химической аппаратуры из таитала при работе с различными средами.  [c.508]

Окисление на воздухе. Сплпвы карбид вольфрама—кобальт начинают заметно окисляться на воздухе при нагреваннп выше 600° С. Более стойкими против окислення являются сплавы карбид вольфрама—карбид тнтана—кобальт и сплавы карбид вольфрама—карбид титана—карбид тантала (ниобия)—кобальт.  [c.543]

В такие системы вводят такл<е незначительные (0,1 -н 0,3% атомных) присадки окислов сурьмы, ниобия, радиоземельных элементов лантана, церия и др. Эти элементы например Sb ) Bbi Tynarat как доноры и сообщают керамике электронную проводимость.  [c.157]

Упругость пара окислов вольфрама и молибдена при температуре плавления окислов тантала и ниобия достаточно высокая, что обеспечивает интенсивное протекание указанных реакций. При этом происходит интенсивный массоперенос через контактную границу, что резко понижает межфазную поверхностную энергию. Развитие реакций такого типа подтверждается тем, что в момент нанесения жидкого окисла тантала на вольфрам или молибден в вакууме, наблюдается резкое ухудшение вакуума от 10 мм рт. ст. до 10 мм рт. ст., несмотря на могцную откачную систему.  [c.314]

В настоящее время общепризнано, что наиболее перспективным способом защиты является нанесение покрытий. Низкая жаростойкость ниобия и тантала вызвана образованием при их окислении растрескивающихся пленок НЬаОа и s 20 соответственно. При окислении молибдена и вольфрама образуются летучие высшие окислы, и, таким образом, эти металлы в атмосфере кислорода при высоких температурах интенсивно испаряются. Указанные различия в характере окисления данных двух групп металлов диктуют разные подходы к разработке мер их защиты.  [c.3]

Так как простое силицирование вследствие нелетучести высших окислов металлов не является эффективной мерой защиты ниобия и тантала [9], широкое распространение получили для их защиты многокомпонентные силицидные покрытия, содержащие относительно небольшие количества металла-основы. Это покрытия Ге—А1—81, Ре—Сг—81, Со—Т1—81, Мн—Т1—81, Мо—Т1—81 и т. д., наносимые газофазным диффузионным [10] и шликерным методами [И—13], причем в последнем случае фактически проводится диффузионное насыщение из обмазок с образованием диффузионно-покровных защитных композиций. Концентрация металла-основы в наружных слоях покрытий невелика. Такие покрытия разрабатываются для защиты тепловых  [c.5]

Известно, что на чисто силицидных покрытиях на ниобии защитная стекловидная пленка образуется при температурах 1200° С и выше. Легирование бором силицидпого покрытия приводит к образованию защитной пленки более сложного состава уже при температуре около 650° С. Это, по-видимому, связано с образованием легкоплавких окислов бора (температура плавления В2О3 577° С [5]). Сохраняется зта пленка лишь до температуры 900° С, выше пленка исчезает и появляется вновь при температурах 1200° С и выше.  [c.45]

На начальной стадии формирования покрытий в окисленной среде происходит окисление как покрытия (MoSia) с образованием вокруг частиц окисных пленок, так и поверхностного слоя подложки (Nb). Характер образующихся окислов определяет возможность формирования покрытия в воздушной или инертной среде. Для формирования напыленных покрытий на воздухе необходимо, чтобы окисные пленки, образующиеся на подложке, имели прочное сцепление с основой, а окисные пленки самого покрытия обладали способностью залечивать поры в покрытии. Учитывая эти требования к окисным пленкам, при нанесении покрытий из MoSij на ниобий необходимо было решить две задачи 1) придать поверхности ниобия способность образовывать при окислении прочно сцепленную с основой стеклообразную или кристаллическую окисную пленку, так как сами окислы ниобия не обладают хорошим сцеплением с основой 2) устранить пористость в покрытии.  [c.109]

Ниобиевые сплавы являются перспективным материалом для деталей, работающих при температуре 1000—1500° С умеренный удельный вес, высокая пластичность в горячем и холодном состоянии, хорошая свариваемость, нелетучесть окислов создают ниобию большие преимущества перед молибденом и другими тугоплавкими металлами.  [c.161]

Повьниение коррозионной стойкости ванадия при легировании ниобием, танталом и другими, но не титаном, элементами, по-видимому, связано с образованием устойчивых окислов легирующих элементов. Вместо неустойчивого, рыхлого окисла VjOj при этом образуется, вероятно, более плотный окисел, представляющий собой твердый раствор на базе этого соединения — типа (V, Nb) 2 Os или (V, Та) 2 Oj.  [c.66]


В настоящее время получены нитевидные кристаллы железа, олова, золота, платины, кадмия, германия, серы и окислов алюминия, хмагния, циркония, молибдена, ниобия и др. Еще в конце прошлого века был запатентован способ получения нитевидных кристаллов серебра путем восстановления его хлористой соли в атмосфере водорода. За последнее время этот способ претерпел значительные усовершенствования.  [c.66]

Щелочные угеталлы могут взаимодействовать также с кислородом, растворенным в твердом металле. При этом, если свободная энергия образования окисла твердого металла меньше энергии образования окиси щелочного металла, то щелочные металлы отбирают у твердых металлов растворенный в них кислород. В результате этого щелочной металл может проникать по границам зерен твердого металла и также интенсифицировать межкристаллитную коррозию. Такое явление наблюдается, например, при коррозии ниобия в литии, когда последний проникает по границам зерен и образует там окислы ниобия, причем глубина проникновения лития тем больше, чем выше содержание кислорода в ниобии. Известно также, что свободные от кислорода Nb, Та, Ti, Zr, Mo и W плохо растворяются в щелочных металлах. На механические свойства твердых металлов влияет смачивание их жидким металлом даже в отсутствие коррозионного воздействия, В некоторых случаях достаточно пластичный металл после выдержки в жидком металле становится хрупким. Это явление связывают с адсорбционным влиянием среды. Жидкий металл проникает по линиям дислокаций, образующимся на ранних стадиях деформации.. Адсорбированные жидкие металлы уменьшают энергетический барьер, препятствующий выходу дислокаций на поверхность и разупрочняющий металл.  [c.144]


Смотреть страницы где упоминается термин Ниобий окислы : [c.187]    [c.113]    [c.29]    [c.15]    [c.53]    [c.34]    [c.261]    [c.295]    [c.306]    [c.533]    [c.294]    [c.492]    [c.128]    [c.138]    [c.358]    [c.358]    [c.106]   
Окисление металлов и сплавов (1965) -- [ c.21 , c.139 , c.303 ]



ПОИСК



Влияние молибдена, ванадия, вольфрама, ниобия и их окислов на окалиностойкость нержавеющих и окалиностойких сталей

Дисперсионное упрочнение сплавов ниобия тугоплавкими карбидами, нитридами и окислами

Ниобий

Ниобит 558, XIV

Окислы



© 2025 Mash-xxl.info Реклама на сайте