Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграммы длительной прочности усталости

Основываясь на параметрах совместной диаграммы термической усталости и длительной прочности (см. рис. 16), была получена [29 ] следующая формула для расчета числа циклов до разрушения  [c.164]

Инженер-конструктор создает продукцию двух видов проект деталей и узлов, представленный чертежами и описательными ведомостями, и прогнозную оценку (расчет) их надежности и работоспособности. Именно второй вид продукции требует самых больших усилий и наиболее активного сотрудничества с разработчиками материалов. Предметом рассмотрения в данном случае является такой аспект работоспособности деталей, как рабочая долговечность. Чтобы предсказать ее, инженер должен определить напряжения, температуру, химический состав рабочей среды и характеристики поведения материала. Для этого он может воспользоваться собственными расчетами, проведением испытаний или консультацией специалистов. Чтобы описать поведение, можно использовать характеристики как связанные, так и не связанные с разрушением. К последней группе характеристик относятся такие свойства, как модули нормальной упругости и сдвига, коэффициент Пуассона, коэффициент линейного расширения, теплопроводность, излучательная способность, плотность. Они нужны для расчета напряжений, деформаций и температур. В числе связанных с разрушением рассматривают коррозионные свойства, характеристики ползучести и длительной прочности, диаграммы много- и малоцикловой усталости, характеристики вязкости разрушения, текучести и предела прочности. Совместное рассмотрение всех этих характеристик приводит к выводу, что механизмы разрушения (в их зависимости от температуры и числа циклов нагружения) представляют наибольший интерес для конструкторов камеры сгорания, а также рабочих и направляющих лопаток.  [c.63]


Из приведенных экспериментальных данных следует, что пределы ползучести и длительной прочности углеродистой и легированной стали при высоких температурах снижаются много сильнее предела усталости. Уже при 350—400° предел усталости углеродистой стали располагается выше предела ползучести, что видно, например, из диаграммы рис. 253.  [c.290]

Эти сопоставления и по прочностным, и по пластическим характеристикам мы приводим по всем рассматриваемым металлам. При этом оказалось, что (при одинаковых соответственных состояниях) э. д. у. определяет также наклоны диаграммы усталости и длительной прочности. Эти результаты подтверждаются данными оптической и электронной микроскопии и в общем удовлетворяют современным представлениям о механизмах пластической деформации и разрушения, основанным на теории дефектов в кристаллических телах.  [c.5]

На практике при определении запаса прочности рассчитываемой детали только в редких случаях в нашем распоряжении имеется диаграмма усталости детали. Во многих случаях не бывает и полной диаграммы усталости материала, полученной на основании испытания лабораторных образцов при различных асимметриях циклов. Объясняется это длительностью испытаний и сравнительно небольшим числом машин, на которых такие испытания производятся. Поэтому в практике при расчетах часто пользуются приближенными диаграммами усталости.  [c.362]

Отмечено некоторое отличие в длительности стадий усталостного разрушения исследованных материалов. Увеличение прогиба в начале испытаний на первом участке первой стадии у образцов из сплава на основе титана и стали 30 происходит очень быстро, в течение 500—2000 циклов, длительность же второго участка первой стадии, характеризуемого уменьшением прогиба, различна. Так, максимум на диаграммах усталости для стали 30 наступает через 5—10 тысяч циклов при всех напряжениях выше предела усталости, то есть длительность первой стадии очень мала и составляет 2% от общей долговечности образцов. Длительность же первой стадии для сплава на основе титана значительно больше (14—27% от долговечности образцов). Это объясняется тем, что в стали 30 как процессы упрочнения, так и процессы разупрочнения протекают очень интенсивно, в результате чего относительно рано появляются микроскопические трещины усталости, вызывающие необратимые повреждения и снижающие усталостную прочность. Указанный вывод подтверждается известным фактом малой выносливости при перегрузках среднеуглеродистых отожженных сталей, для которых кривая повреждения (кривая Френча) проходит почти параллельно горизонтальной части кривой Велера.  [c.39]


Основное внимание в справочнике уделено характеристикам неупругого деформирования и разрушения материалов при кратковременном, длительном и циклическом нагружениях в условиях нормальных и повышенных температур После традиционных сведений о химическом составе, общепринятых характеристиках (Оо2, Og, 5, /) и их нормируемых минимальных значениях дается по возможности подробная информация об истинных (действительных) диаграммах деформирования, циклических кривых, параметрах длительной и малоцикловой прочности При этом широко используется аппроксимация опытных данных приводятся параметры степенной аппроксимации действительной кривой деформирования, циклической кривой, кривых малоцикловой усталости  [c.257]

Превышение над должно учитываться при нанесении правых ветвей. полных диаграмм усталости. Номинальные статические составляющие напряжения цикла, с учетом эквивалентности по критерию достигнутых деформаций ползучести, должны умножаться на коэффициент 1/ЛР -Аналогично определяются статические напряжения а , эквивалентные по линейному накоплению длительного статического повреждения Dx, пропорционального времени т. Скорость повреждения рассматривается как степенная функция напряжений в соответствии с уравнением кривой длительной статической прочности  [c.219]

По полной диаграмме усталости при асимметричном цикле для этой температуры и длительности нагружения определяется запас прочности по выражению (4.51), в котором предельная амплитуда (0а)р определяется точкой В (см. рис. 49).  [c.223]

Для расчетов в соответствии с формулой (1.98) использовались данные следующих экспериментальных исследований (при Тг = = onst) [141] на усталость при симметричном цикле на усталость при различных значениях напряжений на длительную прочность. Полученные при этом результаты представлялись в виде поверхностей в координатах Оа — Ор — Ig (рис. 58). Для упрощения предполагалось, что диаграммы предельных амплитуд напряжений при статических растягивающих и сжимающих напряже-  [c.77]

В практических условиях службы турбинных деталей циклические напряжения обычно накладываются на статические напряжения, как это имеет место, в частности, в отношении турбинных лопаток, для которых внешними силовыми факторами являются статические растягиваюш ие и переменные изгибаюп ие нагрузки, действующие одновременно. О поведении металла в условиях комбинированного воздействия циклических и статических напряжений можно судить по диаграмме Тэпселла (фиг. 235), отличающейся от приведенной выше (п. 28, фиг. 88) диаграммы предельных амплитуд цикла тем, что по оси абсцисс в ней вместо средних напряжений цикла отложены постоянные напряжения, обусловливающие ползучесть. Точка а здесь соответствует пределу усталости, точка б — пределу длительной прочности. Разрушение в любой точке 0, лежащей на кривой абв, происходит вследствие комбинированного воздействия переменных и постоянных напряжений. Точка д соответствует статическому напряжению, вызывающему 0,1% деформации ползучести за данный промежуток времени.  [c.312]

Существуют теоретические методы определения структурной стабильности сплавов. В 60-е годы была разработана методика расчета Факомп [2], позволяющая с той или иной точностью определять склонность сплава на никелевой основе данного состава к образованию ТПУ фаз - главной причины охрупчивания и снижения работоспособности сплавов. Используя диаграмму (см. рис. 1.28) также возможен теоретический прогноз поведения сплава. Что касается определения количественных закономерностей связи структуры и свойств, то они определяются только экспериментально. Речь в данном случае идет о механических свойствах (<Гв, <Го , б, 0, КСи), сопротивлении ползучести, длительной прочности, сопротивлении усталости и термической усталости и других характеристиках. В справочниках же обычно приводят отдельные данные, касающиеся только изменений кратковременных механических свойств, которые, как известно, при высоких температурах свидетельствуют лишь о работоспособности металла в части чувствительности к надрезу и  [c.254]


Необходимо отметить, что указанные факторы — амплитуда деформации, длительность и максимальная температура цикла — являются основными, но не единственными параметрами, определяющими вид разрушения. Не изменяя в целом вид диаграммы, границы областей, характеризующих разрушения различного вида, можно сдвигать в ту или иную сторону для учета воздействия технологических и экшлуатационных факторов (например, шособа и режима выплавки металла, влияния среды, защитных покрытий). Так, вакуумная выплавка никелевого сплава существенно повышает прочность границ зерен, вследствие чего при одних и тех же условиях нагружения смещается область величин сре, фо Ф 1 в которой разрушение происходит по границам зерен. Наоборот, при активном повреждении границ зерен, например при эксплуатации в газовых средах или при склонности материала к межкристаллитной коррозии, разрушение от термической усталости почти всегда начинается по границам зерен еледовательно, в этом случае уменьшаются области Л и 5 на рис. 58 (по границам зерен развивалось разрушение при нагружении стали 12Х18Н9Т при 750° С тв=1,5  [c.102]

Поверхность предельного состояния характеризует прочность материала детали при пропорциональном нагружении, когда число циклов и длительность действия нагрузки возрастают одновременно в одинаковой степени. На диаграмме рис. 4.8 этому процессу соответствует перемеп] ение по лучу ОА . Если в рассматриваемый момент наработка детали характеризуется горизонтальными координатами точки П, то запас по циклической долговечности (для уровня нагрузки в детали А д) определяется отношением отрезков ОА/ОД. Вертикальные и горизонтальные проекции сечений поверхности предельного состояния представляют собой кривые малоцикловой усталости Ае — Ы, Ае — Тц и зависимость долговечности от длительности выдержки в цикле Тц — N. Эти кривые для конструкций энергетического машиностроения рассмотрены в гл. 2 и 3. Зависимости Ае — N как для литых, так и для деформируемых жаропрочных авиационных сплавов на никелевой основе могут быть представлены уравнениями Мэнсона — Коффина АеМ = С. Особенностью этих сплавов является то, что величины т т С при высоких температурах (750—1050° С) не постоянны, а изменяются в широких пределах т — в 1,5— 2 раза, С — до 10—20 раз). Поэтому использование зависимостей типа Ае — в расчетах деталей авиационных двигателей требует экспериментального исследования соответствуюш его материала и определения постоянных т ж С. Однако возможны некоторое обобш ение экспериментальных данных и вывод расчетных зависимостей, пригодных для определения долговечности. Если рассматривать совокупность полученных экспериментальных точек для материалов одного класса и определить средние значения и границу нижних значений области разброса экспериментальных точек, то для долговечностей 10 — 10 соответствующие уравнения этих кривых можно представить в виде  [c.88]


Смотреть страницы где упоминается термин Диаграммы длительной прочности усталости : [c.325]    [c.51]    [c.42]    [c.78]    [c.147]   
Механические свойства металлов Издание 3 (1974) -- [ c.2 , c.183 , c.184 , c.195 ]



ПОИСК



Диаграмма усталости

Диаграммы длительной прочности

Прочность длительная

Усталость

Усталость прочность



© 2025 Mash-xxl.info Реклама на сайте