Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пьезоэффект

Для этих целей пьезоэлектрическим преобразователем возбуждаются ультразвуковые колебания. Возбуждение их происходит в результате так называемого пьезоэффекта — электрические колебания, поданные на пластину, преобразуются в механические. Это имеет место вследствие перестройки в расположении кристаллов пластины из кварца, титаната бария и д )., оси которых под действием проходящего тока поворачиваются в металле, а в результате этого поворота изменяется и суммарная длина пластины. Эти удлинения, следующие непрерывно друг за другом, создают волну.  [c.125]


Расширенный набор независимых переменных позволяет анализировать перекрестные эффекты, возникающие при сочетании различных по своей природе процессов. В электрических и магнитных полях за счет взаимного влияния механических явлений, с одной стороны, и электрических или магнитных, с другой, возникают такие эффекты, как электрострикция, магнитострикция, пьезоэффект, магнитоупругий эффект и др. Сочетание термических и электрических (магнитных) процессов приводит к термоэлектрическим (термомагнитным) эффектам и соответствующим свойствам. Рассмотрим эти дополнительные возможности термодинамики на примере процессов магнитного охлаждения тел, лежащих в основе современных методов получения сверхнизких температур.  [c.162]

Сканирование обычно осуществляют изменением давления газа внутри интерферометра (что приводит к изменению показателя преломления среды) или геометрического расстояния между зеркалами, Последнее может быть достигнуто перемещением одного из зеркал (с помощью пьезоэффекта, термического расширения распорных колец и т.д.).  [c.251]

Возникал вопрос о познавательной сущности второго закона Ньютона. Некоторые ученые полагали, что второй закон Ньютона по существу не является физическим законом, а является лишь количественным определением силы. Но с такой точкой зрения нельзя согласиться, так как основной закон механики — второй закон Ньютона невозможно по его содержанию привести лишь к формуле, которой определяется сила. Законы Ньютона отражают объективную реальность, что, конечно, нельзя согласовать с возможностью предварительного определения силы одной из формул (И 1.5а) или (111.5b), так как с такой возможностью связывается неявное представление об известной произвольности определения , не опирающегося на эксперимент. В действительности же, как было разъяснено выше, можно найти величину силы, не обращаясь к характеристике динамических свойств тел — к количеству движения. Например, можно измерять силы деформациями упругих тел или иными средствами, основанными, например, на существовании пьезоэффектов. Итак, количественное измерение силы не зависит от количества движения материальной точки.  [c.229]

Появление поляризации в диэлектрике под действием механических напряжений называют прямым пьезоэффектом. Кроме прямого пьезоэффекта существует и обратный. Он заключается в том, что при наложении внешнего электрического поля кристалл несколько сжимается или расширяется. Пьезоэффект наблюдается во всех нецентросимметричных кристаллах. Под действием механических напряжений происходит смещение заряженных частиц и, таким образом, возникает дипольный момент. Смещение частиц в кристаллах с центром симметрии не приводит к появлению поляризованного состояния, так как в этом случае в силу наличия центра симметрии происходит электрическая компенсация моментов, образованных за счет смещения положительно и отрицательно заряженных частиц.  [c.295]


Для вторичного пироэффекта пропорциональность между АР и А7 вытекает из линейного закона теплового расширения А/= —аАТ и рассмотренного выше пьезоэффекта.  [c.297]

Магнитострикция, электрострикция и пьезоэффект. Выражения (10.22) и (10.23) для дифференциалов термодинамических потенциалов диэлектриков (и аналогичные для магнетиков) позволяют установить ряд соотношений между различными их свойствами.  [c.193]

Классы симметрии, для которых все компоненты тензора третьего ранга равны нулю, обладают общим элементом симметрии — центром симметрии. Это не случайно, а является следствием принципа Неймана. Суть этого принципа в том, что группа симметрии любого физического свойства какого-либо кристалла включает элементы симметрии класса, к которому принадлежит данный кристалл. Это условие необходимое, но недостаточное. Например, для существования пьезоэлектричества отсутствие центра симметрии обязательно. Но в кристалле без центра симметрии пьезоэффекта может и не быть.  [c.45]

Например, для класса 32 (случай кристалла кварца) есть только две независимые компоненты матрицы, описывающей пьезоэффект. Однако, как следует из матрицы (см. табл. 2.10), компонента <1ц может описывать, во-первых, деформацию растяжения — сжатия по оси X при приложении электрического поля по той же оси, во-вторых, деформацию растяжения — сжатия по оси У при приложении электрического поля по оси X и, в-третьих, деформацию сдвига ХК при приложении поля по оси У.  [c.45]

Помимо пьезомодуля, значение которого зависит от кристаллографического направления, для оценки пьезоэлементов применяют коэффициент электромеханической связи К, характеризующий эффективность преобразования механической энергии в электрическую и наоборот (при прямом и обратном пьезоэффекте), а также механическую добротность Qm, определяемую потерями на внутреннее трение в. материале, от значения которой существенно зависит увеличение амплитуды колебаний элемента при резонансной частоте. Работоспособность пьезоматериалов определяется также значениями г,, tg б и точкой Кюри Тс.  [c.558]

Пьезомодуль измеряется в пКл/Н (1 пКл= 10 Кл). Если направление остаточной поляризации Яо принять за ось 3, то пьезоэффект вдоль этой оси характеризуется пьезомодулем йзз при сжатии— растяжении материала вдоль оси 3, а пьезомодулем dai — при деформации в перпендикулярной плоскости.  [c.558]

Так, например, центросимметричные кристаллы не могут быть пиро- и пьезоэлектриками, поскольку для возникновения пиро- и пьезоэффекта какие-то направления в кристалле должны быть полярными, вследствие чего в кристалле не должно быть центра симметрии. И действительно, пьезо- и пироэффекты обнаруживаются только в полярных кристаллах, причем вдоль полярных осей кристалла. Например, один из пьезоэлектриков — кварц, относится к тригональной системе, в которой оси 3-го порядка неполярны, а оси 2-го порядка полярны. Пьезоэффект наблюдается вдоль осей 2 и не наблюдается вдоль осей 3.  [c.153]

Заметим, что в силу обратимости явления пьезоэффекта равенство (50.10) позволяет также определить критическую величину напряженности электрического поля, заданного на бесконечности. Действительно, если при х + вектор напряженности электрического поля равен Е = О, Е" , где = — [(с зОо/ /(< й .зз — то из формулы (50.11) получим  [c.402]

Пьезоэлектрические материалы. В приборах акустического контроля чаще всего используют контактные преобразователи, принцип работы которых основан на пьезоэлектрическом эффекте. Активный элемент такого преобразователя изготовляют из материала, обладающего пьезоэлектрическими свойствами. Прямым пьезоэлектрическим эффектом называют появление в некоторых веществах электрической поляризации под действием приложенных к ним механических напряжений или деформаций. Обратный пьезоэлектрический эффект заключается в возникновении механического напряжения и деформации в пьезоматериале, помещенном в электрическом поле. Обратный пьезоэффект используют для излучения, а прямой — для приема акустических колебаний.  [c.60]

Первый член в правой части этого уравнения показывает связь напряжения с деформацией, соответствующую обычным условиям распространения плоской упругой волны в материале. Второй член представляет собой механическое напряжение, вызываемое электрическим генератором Дф — разность электрических потенциалов на электродах пластины. Третий член учитывает влияние относительного изменения толщины пластины Au/h под действием пьезоэффекта. Величина  [c.64]


Импеданс преобразователя. Рассмотрим колебания свободной пластины. Демпфер и среда, в которую излучается ультразвук, отсутствуют. Если не учитывать внутренних потерь в пластине, то сопротивление Zp, обусловленное пьезоэффектом, должно быть чисто реактивным, так как энергия из пластины никуда не уходит.  [c.64]

Передаточная функция достигает максимума на частоте свободных колебаний кольца, когда d = Я, /2 = j 2fi) (с — скорость ультразвука в пьезоматериале). С этой частотой совпадает резонансная частота электрического контура. Явление вторичного пьезоэффекта учитывать не будем.  [c.166]

Пьезоэлектрические возбудители колебаний (ПЭВ) основаны на обратном пьезоэффекте. Удлинение или укорочение пьезоэлектрической пластины в направлении размера I  [c.274]

При изготовлении электромеханических преобразователей особенно ультразвуковых значительное распространение получил титанат бария. Как известно, титанат бария обладает в сегнето-электрической области при температуре от О до 120° С значительным пьезоэффектом. Точка Кюри для него находится около 120° С. Монокристаллы ВаТЮз в природе не встречаются и выращиваются искусственно по определенным методикам лишь в очень небольших размерах.  [c.313]

Кварц. Пьезоэффект слабый, но очень постоянный, почти не зависящий от влажности окружающей среды. Исчезает только при нагревании до 576°. При 1700° кварц плавится. Кристаллы очень прочные. Используются при больших ускорениях или высоких температурах.  [c.400]

Некоторые кристаллы (кварц, турмалин, сегнетова соль и др.) дают пьезоэлектрический эффект под действием упругой деформации на поверхности кристалла появляются электрические заряды (прямой пьезоэффект) и наоборот, под действием электрического поля они испытывают упругие деформации — сжимаются или растягиваются в зависимости от направления поля (обратный пьезоэф( )ект). Поэтому, если пластинку, вырезанную из пьезоэлектрического кристалла, поместить между обкладками конденсатора, к которому подводится переменное электрическое напряжение, то в пластинке будут возникать переменные упругие деформации, т. е. будут происходить вынужденные механические колебания. Но сама пластинка, как и всякое упругое тело, обладает собственными частотами колебаний, зависящими от  [c.744]

Формула (10.30), как и (10.29), также относится к объемному пьезоэффекту, хотя обычно пьезоэлектрические явления наблюдаются в кристаллах в определенных кристаллографических направлениях . Пластинка, вырезанргая из пьезоэлектрического кристалла и снабженная двумя электродами, под действием внешнего электрического ноля испытывает деформацию, что вызывает в ней упругие колебания. И наоборот, механически возбужденная деформация вызывает на электродах пластинки электрические заряды.  [c.194]

Пьезоэлектрики — кристаллические диэлег.трики, не имеющие центра симметрии, в которых под действпе.м механических напряжений возникает электрическая поляризация (прямой пьезоэлектрический эффект), а под действием внешнего электрического поля — механическая деформация (обратный пьезоэлектрический эффект). Таким образом, с помощью пьезоэлектриков можно преобразовывать электрические сигналы в механические и наоборот. Между поверхностной плотностью заряда (/, образующегося при прямом пьезоэффекте на поверхности поляризованного кристалла, и механическим напряжением а существует прямо пропорциональная зависимость q = do, причем знаки зарядов на электродах пьезоэлемента зависят от направления механических напряжений (сжатие — растяжение). Механическая деформация и в такой же зависимости находится с напряженностью внешнего электрического поля Е при обратном пьезоэффекте u = dE, а характер деформации (сжатие или растяже-  [c.557]

Коэффициент d (пьезомодуль) у одного и того же диэлектрика одинаков как для прямого, так и для обратного пьезоэффекта. В качестве пьезоэлектрических применяются материалы с ярко выраженными пьезосвойствами пьезоэлектрические монокристаллы и пьезокерамика. Обычная сегнетокерамика как изотропная среда не обладает пьазосвойствами. Для придания этих свойств сегнетокерамику поляризуют выдерживают в нагретом состоянии в сг льном постоянном электрическом поле [33, 34]. В итоге векторы спонтанной поляри-зованности доменов внешним полем ориентируются, из изотропного тела керамика превращается в анизотропное, обладающее устойчивой остаточной поляризованно-стью Рй, направление которой определенд поляризующим полем. Это приводит к появлению пьезоэффекта.  [c.558]

Исследования взаимодействия упругих и температурных полей явились началом углубленного изучения и других сопряженных физических процессов и в первую очередь таких, как электроупругость и магнитоупругость. Интерес к сопряженным электроупругим процессам в сплошных средах связан с широким применением в различных областях техники устройств, работа которых основана на использовании явления пьезоэффекта. Открытый братьями Кюри пьезоэлектрический эффект состоит в том, что при деформировании некоторых анизотропных кристаллов на их поверхности появляются электрические заряды. Имеет место также и обратный пьезоэффект, который состоит в возникновении внутренних напряжений при действии электрического поля. Данное явление существенно связано с симметрией  [c.235]

Напомним, что пьезоэффект возможен только для сред, не обладающих центром -еимметрии, и, следовательно, пьезоэлектрические материалы являются существенно анизотропными. Комплекс постоянных, входящих в уравнения состояния (5.8) для среды с самой низкой симметрией (триклинная система, класс 1), состоит из 21 модуля упругости, 18 пьезоэлектрических и шести диэлектрических постоянных. Учет симметрии кристалла приводит к уменьщению количества постоянных в соотношениях (5.8). Подробный анализ зависимости свойств пьезоэлектрического кристалла от его симметрии представлен в [229].  [c.237]


Развитие электроники, электроакустики, измерительной техники привело в последние юды к интенсивному развитию новых областей физики диэлектриков. Одно из таких направлений связано с изучением линейного взаимодействия электрических, механических и тепловых нолей при ньезо- и пироэлектрическом эффекте. В настоящее время существуют различные технические устройства, в которых успешно используется явление пьезоэффекта. Пьезоэлектрические л атериалы широко применяются в дефектоскопии, в электроакустических преобразователях, в радиотехнических устройствах типа резонаторов, полосовых фильтров, ультразвуковых линий задержки и т. д. Особое внимание исследователей к таким материалам, как пьезоэлектрики, связано с явлением пьезоэффекта, обнаруженным братьями Кюри в 1880 г. Это явление состоит в том, что при деформировании кристаллов некоторых кристаллографических классов на их поверхностях появляются электрические заряды, пропорциональные величине деформации. Термодинамический анализ показывает существование обратного эффекта, который проявляется в возникновении механических напряжений в кристалле при действии электрического поля. Характерной особенностью пьезоэффекта является его связь  [c.69]

При прямом пьезоэффекте изменение поляризованностп АР, равное поверхностной плотности выступивших зарядов, пропорционально механическим нанрял<ениям, выз-  [c.158]

Пьезоматериалы. Пьезоэлектрические материалы — материалы, обладающие пьезоэффектом, используются для изготовления пьезоэлементов (пье-зопластин), служащих в акустических приборах НК для преобразования электрических колебаний в упругие и упругих колебаний в электрические.  [c.204]

Способ с раздельно-совмещенным преобразователем, В импедансном дефектоскопе с РС-пресбразователем (рис. 101) нреоГрззователь / содержит идентичные, раздельные, акустически и электрически изолированные друг от друга излучающий И и приемный П составные пьезовибраторы. Каждый вибратор состоит нз пьезоэлемента 2 в виде прямоугольного бруска с электродами на боковых сторонах (поперечный пьезоэффект) и накладок 3 и 4. Для повышения чувствительности база преобразователя уменьшена путем размещения контактных наконеч-  [c.299]

Пьезоэлектрический эффект был открыт при исследовании кристаллических материалов типа кварца, и первоначально в технике применяли кристаллические пьезопреобразователи. В на-стояш,ее время открыты различные классы пьезоматериалов, отличающиеся физическим механизмом возникновения пьезоэффекта. Согласно этой классификации кварц относят к неполярным пьезодиэлектрикам.  [c.61]

В серийно выпускаемых ультразвуковых дефектоскопах для излучения и приема ультразвука чаще всего используют пьезопластины, обладающие пьезоэлектрическим эффектом. Прямой пьезоэффект состоит в появлении электрических зарядов на обкладках пьезопластины в результате ее деформации. Обратный пьезоэффект заключается в деформации пьезопластины под действием приложенного электрического поля. Обычно используют деформации растяжения —сжатия пластины по толщине. Обратный пьезоэффект, вызывающий такую деформацию, применяют для излучения продольных волн, а прямой пьезоэффект, связанный с деформацией по толщине, —для приема этих волн. Для возбуждения и приема поперечных волн используют деформацию сдвига по толщине. В этом случае для передачи деформации от пластины к изделию используют густые смазочные материалы, так как через жидкотекучие вещества поперечные волны практически не проходят. В качестве такой передающей среды используют нетвердеющие эпоксидные смолы.  [c.133]

Коэффициент преобразования определяется соотношением между взаимосвязанными акустическими и электрическими величинами. Вследствие обратного пьезоэффекта при подаче на пьезопластину электрического напряжения она излучает упругие колебания с амплитудой Коэффициент преобразования (передаточная функция) при излучении /Си = PnlU . В режиме приема, когда на пьезоэлемент падает акустический сигнал с амплитудой ра, на обкладках пьезоэлемента возникает напряжение Un- Коэффициент преобразования на приеме Кп = UJPn-  [c.134]

В УЗ дефектоскопии в качестве источников и приемников ультразвука используют материалы, обладающие пьезоэлектрическим эффектом, который заключается в появлении электрического заряда на гранях кристалла материала при приложении механического напряжения (прямой пьезоэффект). При воздействии механических колебаний на пластину из пьезоматериала (пьезопластину) между ее поверхностями возникает переменная электродвижущая сила. Существует и обратный пьезоэффект, заключающийся в деформации (изменении размеров) пластины под действием электрического поля. Характер деформации определяется полярностью приложенного напряжения если напряжение переменное, то размеры пластины изменйются с частотой приложенного поля. Таким образом, с помощью пьезопластины можно преобразовывать УЗ колебания в электрические и наоборот. Впервые пьезоэлектрические свойства были обнаружены у горного хрусталя — одной из разновидностей кварца.  [c.23]

В последнее время для изготовления пьезопреобразователей широко использовали пьезопластины из титаната бария — материала, получаемого искусственно, его пьезоэффект в 50 раз больше, чем у кварца. К недостаткам титаната бария следует отнести большие механические и диэлектрические потери, что приводит к его перегреву при работе при температуре 90° С пьезоэлектрические свойства значительно снижаются, а при 120° С (точка Кюри) исчезают. Широко используют и другую керамику — смесь циркония с титанатом свинца (ЦТС), у которой пьезоэффект вдвое выше, чем у титаната бария, и сохраняется до температуры 320° С. Толщину d пьезопластины в УЗ преобразователе для обеспечения резонансного режима и максимальной мощности излучения выбирают такой, чтобы собственная частота /о пластины соответствовала частоте УЗ колебаний = Х/2.  [c.23]

Одной из важных и интереснейших областей применения достижений физики в радиотехнике 20—30-х годов было использование пьезоэффекта. Кварц, турмалин и некоторые другие кристаллы получили в эти годы широкое распространение для стабилизации и эталонирования частоты электрических колебаний и для ультраакустики. В области теории и практики применения кварца для стабилизации частот в радиотехнике известны работы Д. А. Рожанского, М. С. Неймана, Ю. Б. Кобзарева и др.  [c.319]

Рис. 10.186. Пьезоэлектрический датчик ускорений, работающий при деформациях сдвига. К внутренней поверхности укрепленного в корпусе 2 кольца I из керамики титаната бария приклеена инертная масса 3, сила инерции которой при измерениях нагружает кольцо на срез. Заряд снимается с цилиндрических поверхностей, где он возникает из-за пьезоэффекта в керамике при деформации сдвига. Датчик не чувствителен к [юперечным составляющим колебания. Рис. 10.186. <a href="/info/128731">Пьезоэлектрический датчик</a> ускорений, работающий при <a href="/info/4836">деформациях сдвига</a>. К <a href="/info/1465">внутренней поверхности</a> укрепленного в корпусе 2 кольца I из <a href="/info/30463">керамики титаната бария</a> приклеена <a href="/info/6228">инертная масса</a> 3, <a href="/info/554">сила инерции</a> которой при измерениях нагружает кольцо на срез. Заряд снимается с <a href="/info/26135">цилиндрических поверхностей</a>, где он возникает из-за пьезоэффекта в керамике при <a href="/info/4836">деформации сдвига</a>. Датчик не чувствителен к [юперечным составляющим колебания.
Работа прибора основана на пьезоэффекте от действия на ньеэоэлемент возникающих при колебаниях объекта сил (4 и б — выводы, 2 — места склейки).  [c.657]

В вибрризмерительных приборах используются различные материалы, обладающие пьезоэффектом. Наибольшее применение имеют следующие материалы.  [c.400]


Сегнетова соль. Пьезоэффект в сотни раз сильнее, чем у кварца. При температуре —18 и 24° происходят резкие изменения силы эффекта. При 45° эффект пропадает, и при 55° сегнетова соль плавится. Кроме того, она гигроскопичная и выветривается. Вибродатчики из сегнетовой соли применяются главным образом в качестве Ндикаторов и сигнализаторов.  [c.400]

Дигидрофосфат аммония. Пьезоэффект слабее, чем у сегнетовой соли, но значительно устойчивее. При температуре 100° кристаллы начинают разрушаться (выделяется аммиак). Небольшая диэлектрическая постоянная создает очень малую емкость пьезодатчиков, поэтому, чтобы избежать шунтирующего действия емкости проводов, требуется высокое качество изоляции выводов и подводящие провода следует делать возможно короче. Несмотря на эти недостатки, некоторые иностранные фирмы продолжают выпускать вибродатчики с пьезоэлементами из дигпдрофосфата аммония.  [c.400]


Смотреть страницы где упоминается термин Пьезоэффект : [c.352]    [c.220]    [c.63]    [c.746]    [c.375]    [c.245]    [c.301]    [c.301]    [c.586]    [c.656]   
Термодинамика (1991) -- [ c.193 ]

Теплоэнергетика и теплотехника Общие вопросы Книга1 (2000) -- [ c.230 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.101 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.265 ]

Акустика слоистых сред (1989) -- [ c.153 ]

Ультразвук (1979) -- [ c.289 ]



ПОИСК



Основные уравнения пьезоэффекта и электрострикцин

Пьезоэффект обратный, прямой

Пьезоэффекта уравнения

Электрострикция (квадратичный пьезоэффект)

Электроуправляемый пьезоэффект н мякропозиционеры



© 2025 Mash-xxl.info Реклама на сайте