Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аэрация

Как осуществляется освещение и аэрация промышленных зданий  [c.411]

Рис. 172. Вид ячейки для изучения неравномерной аэрации Рис. 172. Вид ячейки для изучения неравномерной аэрации

При наличии коррозии в результате работы макропар характер влияния изменения условий на скорость грунтовой коррозии металлов может существенно измениться. Так, если при работе микропар плотные, воздухонепроницаемые грунты являются наименее агрессивными, то при работе макропар неравномерной аэрации наибольшей коррозии подвергаются участки протяженных металлических конструкций (например, трубопроводов), находящихся именно в этих грунтах.  [c.390]

Коррозия вблизи ватерлинии, т. е. в зоне периодического смачивания (от 0,4 до 1 м и более над уровнем морской воды), часто бывает усиленной (рис. 284), что обусловлено облегченным доступом кислорода к поверхности металла, ухудшением условий для возникновения и сохранения защитных пленок на металле при периодическом смачивании и энергичным коррозионным воздействием брызг морской воды (при быстром испарении брызг образуются кристаллики морской соли, смоченные насыщенным раствором, которые затрудняют появление и сохранение защитных пленок лучи солнца нагревают металлы и ускоряют коррозионный процесс в условиях усиленной аэрации).  [c.399]

Зазоры и щели оказывают весьма неблагоприятное действие на сохранность стальной конструкции, так как в них вследствие плохой аэрации усиленно протекает анодный процесс растворения металла.  [c.400]

Объяснение щелевой коррозии как результата работы пары неравномерной аэрации является упрощенным, так как щелевая коррозия наблюдается и в кислых электролитах, и в растворах, не содержащих кислорода.  [c.415]

Особенно важен в практических условиях концентрационный кислородный элемент, т. е. элемент, в котором отдельные участки электролита отличаются между собой по концентрации растворенного в них кислорода. Причина образования коррозионного элемента неравномерной аэрации заключается в том, что потенциал кислородного электрода зависит от концентрации кислорода в растворе. С повышением концентрации кислорода потенциал кислородного электрода становится более положительным. Неравновесный электродный потенциал металлов также сильно  [c.28]

Различные виды местной коррозии возникают вследствие самых разнообразных причин (крупнозернистое строение сплава, неодинаковая толщина и пористость защитных пленок, неравномерная обработка поверхности металла, наличие в сплаве включений, дифференциальная аэрация, концентрация напряжений и др.).  [c.160]


Щелевая коррозия металлов встречается почти в любой конструкции НЛП любом аппарате при условии наличия в них зазоров, застойных ЗОИ и т. п. и вызывается, согласно теории Ю. Р. Эванса, возникновением пар дифференциальной аэрации вследствие доставки растворенного в электролите кислорода к. металлической поверхности в щелн с меньшей скоростью, чем к примыкающим к ней участкам поверхность металла в щели становится при этом анодом.  [c.171]

Металлические трубопроводы при большой протяженности соприкасаются с грунтами самого различного состава и строения, различной влажности и аэрации.  [c.184]

Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности.  [c.184]

Рис. 2.4. Элемент дифференциальной аэрации Рис. 2.4. Элемент дифференциальной аэрации
Элементы дифференциальной аэрации часто являются причиной язвенной или щелевой коррозии нержавеющих сталей, алюминия, никеля и других пассивных металлов в водных средах, например в морской воде.  [c.25]

Рис. 2.5. Элемент дифференциальной аэрации на железе со ржавчиной Рис. 2.5. <a href="/info/48541">Элемент дифференциальной аэрации</a> на железе со ржавчиной
Рис. 2.6. Коррозия по ватерлинии — пример элемента дифференциальной аэрации Рис. 2.6. Коррозия по ватерлинии — пример элемента дифференциальной аэрации
КИСЛОРОДНЫЙ ЭЛЕКТРОД И ЭЛЕМЕНТ ДИФФЕРЕНЦИАЛЬНОЙ АЭРАЦИИ  [c.37]

Отрицательное значение э. д. с. указывает на то, что AG для реакции (15) положительно, значит, реакция самопроизвольно не идет. Напротив, электроны переносятся в элементе слева направо. Таким образом, левый электрод (И) положительный (катод), а правый (13) — отрицательный (анод). Это выражает сформулированное ранее положение, что в любом элементе дифференциальной аэрации электрод, контактирующий с кислородом при низком давлении стремится быть анодом, а при более высоком давлении — катодом.  [c.38]

Так как напряжение на поверхности концентрируется в вершине надреза или в области дефекта, там и происходит быстрый рост трещин. Поверхностные дефекты (например, питтинги или усталостные трещины) действуют как эффективные концентраторы напряжений. К тому же в достаточно глубоких поверхностных дефектах электрохимический потенциал, как отмечалось ранее, отличается от потенциала поверхности состав и pH раствора в местах поражений также изменяются вследствие работы элементов дифференциальной аэрации. Эти изменения в сочетании с повышенным локальным напряжением способны инициировать КРН или ускорить рост трещины. Именно поэтому титановые сплавы с гладкими поверхностями устойчивы к КРН в морской воде, но разрушаются, если на поверхности образовались коррозионноусталостные трещины [44]. Действительное напряжение в вершине трещины глубиной а в напряженном пластичном твердом теле может быть рассчитано как коэффициент интенсивности напряжения Ki- Для образца, изображенного на рис. 7.9, Ki вычисляется по формуле [45, 46]  [c.146]


Агрессивность грунта определяется 1) его пористостью (аэрацией), 2) электропроводимостью или сопротивлением, 3) наличием растворенных солей, включая деполяризаторы или ингибиторы, 4) влажностью, 5) кислотностью или щелочностью. Каждый из этих параметров может влиять на характеристики анодной и катодной поляризации металла в грунте [6].  [c.182]

Пористый грунт может дольше сохранять влагу или способствовать более интенсивной аэрации, а оба эти обстоятельства приводят к увеличению начальной скорости коррозии. Существует, однако, и другая связь защитные свойства продуктов коррозии, образующихся в хорошо аэрированных грунтах, могут быть лучше, чем у пленок, образующихся в неаэрированных почвах. В большинстве грунтов, особенно если нет хорошей аэрации, коррозия идет с образованием глубоких язв. Очевидно, что точечная коррозия опаснее для трубопроводов, чем равномерная, протекающая с большей скоростью. Следует упомянуть также, что в плохо аэрированных почвах, содержащих сульфаты, могут существовать сульфатвосстанавливающие бактерии, которые часто ускоряют коррозию.  [c.182]

При отсутствии пассивности скорость коррозии металлов в условиях сильной аэрации определяется в основном перенапряжением ионизации кислорода. В этом случае скорость коррозии металлов сильно зависит от природы и содержания катодных примесей или структурных составляющих чем ниже перенапряжение ионизации кислорода на микрокатодах и чем выше содержание этих микрокатодов, тем больше скорость катодной реакции [см. уравнения (488а) и (4886)], а следовательно, и коррозионного процесса.  [c.243]

Аэрационные пары (пары неравномерной аэрации), теория которых разработана Звансом, возникают на поверхности ряда металлов, корродирующих с кислородной деполяризацией при диффузионном или диффузионно-кинетическом контроле в результате того, что приток кислорода к одной части поверхности  [c.245]

Эффект неравномерной (дифференциальной) аэрации можно количественно оценить по величине тока, протекающего между одинаковыми железными или цинковыми образцами, погруженными Б раствор Na l, разделенный диафрагмой (пористой пере-  [c.246]

Таким образом, перемешивание электролита в одном из пространств ячейки, облегчая диффузионные процессы (в результате уменьшения толщины диффузионного слоя), одновременно снижает концентрационную поляризацию и катодного, и анодного процесса, т. е. вызывает одновременно и эффект неравномерной аэрации, и мотоэлектрический эффект, которые действуют в противоположных направлениях. Направление тока при этом, т. е. полярность электродов гальванической макропары, обусловлено преобладанием одного из этих эффектов. Для менее термодинамически устойчивых металлов (Fe, Zn и др.) преобладает эффект неравномерной аэрации, а для более термодинамически устойчивых металлов (серебра, меди и их сплавов, иногда свинца) — мотоэлектрический эффект. Следует, забегая несколько вперед, отметить, что у электродов макропары неравномерной аэрации или мотоэлектрического эффекта за счет работы микропар в большей или меньшей степени сохраняются функции — у катода анодные, а у анода катодные (см. с. 289).  [c.247]

Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и igff почв и в растворах электролитов. gg Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры.  [c.389]

Биологический фактор (обрастание подводной части конструкции различными морскими растительными и животными организмами мшанками, балянусами, диатомеями, кораллами) значительно ускоряет коррозию металлов в морской воде, вызывая разрушение защитных покрытий (что наблюдается в присутствии ба-лянусов), неравномерную аэрацию и щелевую коррозию. Кроме того, некоторые организмы (например, диатомеи) в результате фотосинтеза выделяют кислород, что ускоряет коррозию, так как  [c.400]

Неоднородность жидкой фазы Различие в конценграции кислорода или других окислителей. Участки, омываемые раствором с меньше концентрацией кислорода или окислителя, будут анодами Многочисленные случаи коррозии вследствие неравномерной аэрации раствора, например коррозии по узким щелям. Интенсивная коррозия рудничного оборудования вследствие сильного деполяризующего действия или ионов  [c.22]

Ранее было указано, что па скорость коррозии металлов оказывает влияние и характер обработки поверхности конструкции. Экспериментально было установлено, что гладкая поверхность металла по сравнению с rpy6oii, шероховатой, обладает большей стойкостью к коррозии. Гладкая поверхность металла имеет меньше различных дефектов в виде зазоров, царапин и т. д., которые могут явиться причиной образования очагов коррозии. Так, например, поверхности, грубо обработанные резцом,. могут подвергаться более сильной коррозии вследствие того, что к поверхности металла, лежащего в углублении рисок, будет поступать меньше кислорода, чем к участкам, лежащим на гребнях поэтому в случае 1ейтраль[юй или щелочной среды, когда процесс коррозии металла идет с кислородной деполяризацией, па участках с большей концентрацией кислорода (гребни) потенциал будет более положителен, чем на участках с меньшей концентрацией кислорода (углубление), и вследствие дифференциальной аэрации возникает коррозионный микроэлемент.  [c.84]

Образование застойных зон жи.ткости в реакционных аппаратах сильно увеличивает возможность возникновения коррозии за счет макропар неравномерной аэрации. Этому способствует отложение различных осадков в застойных зонах. Предупредитель-  [c.93]

Ха шктер коррозии металлов и сплавов в почвсиш.кх условиях отличен от коррозии в растворах электролитов и в атмосферных условиях, поскольку процессы подземной коррозии металлов в большинстве случаев протекают при недостаточной аэрации, а разрушения носят местный характер. Язвенный характер коррозии, в частности подземных магистральных газоироводов.  [c.191]


При бо..1ьшпх скоростях движения морско воды ве )оят-ность точечной коррозии значительно меньше вследствие улучшения аэрации поверхности.  [c.226]

Степень о б л агора ж и в а шш электродного потенциала титана зависит от длительности аэрации, обработки пове/тхности титана и других факторов, определяющих в конечном результате толщину образующейся защитной пленки.  [c.281]

В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор Na l, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них.  [c.25]

Кислородным электродом может служить платинированная платиновая пластинка, погруженная в электролит, насыщенный кислородом. Этот электрод особенно важен при изучении коррозии благодаря той роли, которую он играет в элементах диф рен-циальной аэрации, лежащих в основе механизмов щелевой и точечной коррозии.  [c.37]

Влияние аэрации на подземную коррозию обобщено Романовым [7] В хорошо аэрируемых грунтах скорость питтингообра-зования быстро падает от высоких начальных значений, вследствие окисления железа и образования на поверхности металла гидроксида железа, обладающего защитными свойствами и снижающего скорость питтингообразования. С другой стороны, в плохо аэрируемых грунтах начальная скорость питтингообразования снижается очень медленно. В этом случае неокисленные продукты коррозии диффундируют вглубь почвы и практически НС защищают металл от дальнейшего разрушения. Агрессивность почвы влияет также на наклон кривой зависимости глубины пит-тинга от времени. Так, даже в грунтах с хорошей аэрацией избыточная концентрация растворимых солей будет препятствовать об-  [c.182]


Смотреть страницы где упоминается термин Аэрация : [c.32]    [c.279]    [c.385]    [c.387]    [c.29]    [c.55]    [c.76]    [c.91]    [c.97]    [c.256]    [c.15]    [c.26]    [c.117]    [c.159]    [c.175]   
Смотреть главы в:

Коррозионная стойкость оборудования химических производств  -> Аэрация


Физические основы механики и акустики (1981) -- [ c.139 ]

Катодная защита от коррозии (1984) -- [ c.58 , c.61 , c.354 ]

Жидкости для гидравлических систем (1965) -- [ c.120 ]

Теплотехнический справочник Том 2 (1976) -- [ c.727 , c.728 ]

Ингибиторы коррозии металлов в кислых средах (1986) -- [ c.122 ]

Металлургия благородных металлов (1987) -- [ c.0 ]

Теплотехнический справочник том 2 издание 2 (1976) -- [ c.727 , c.728 ]

Теплотехнический справочник Том 2 (1958) -- [ c.5 ]

Техническая энциклопедия том 24 (1933) -- [ c.0 ]

Техническая энциклопедия том 25 (1934) -- [ c.60 ]



ПОИСК



Аэрация - Схемы

Аэрация воды

Аэрация доступ воздуха

Аэрация жидкости

Аэрация и содержание кислорода

Аэрация песков

Аэрация потока

Аэрация потока на быстротоке

Аэрация пульпы

Аэрация цеха естественная

Аэрация цехов

Аэрация, влияние на коррозию

Борьба с обводнением и аэрацией масла

Влагоперенос в зоне аэрации

Внедрение пневматической аэрации в очистных сооружениях

Давление избыточное е аэрация воды

Даниэля дифференциальной аэрации

Дезодорация воды аэрацией

Дифференциальная аэрация

Железо аэрации

Исследование пар дифференциальной аэрации

Кислородный электрод и элемент дифференциальной аэрации

Коррозия вследствие различной аэрации

Коэффициент аэрации

Коэффициент аэрации потока

Критерий начала аэрации

Опытно-фильтрационные опробования в зоне аэрации

Организация воздухообмена Аэрация цехов

Пары дифференциальной аэрации

Прибор дифференциальной аэрации

РАСЧЕТ АЭРАЦИИ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Сооружения для предварительной аэрации и биокоагуляции

Удаление из воды сероводорода (аэрация)

Удаление углекислоты путем аэрации

Элемент дифференциальной аэрации

Элемент неравномерной (дифференциальной) аэрации



© 2025 Mash-xxl.info Реклама на сайте