Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжении касательные кручении в случае круглого стержн

На рис. 7.52, а представлено известное распределение касательных напряжений при кручении в поперечном сечении круглого стержня прн упругой деформации. Напряжение максимально на периферии и ио линейному закону падает, обращаясь в нуль, в центре сечения. При увеличении угла закручивания касательное напряжение на поверхности достигнет предельного значения к, при котором начнется пластическая деформация. В случае отсутствия упрочнения и дальнейшего увеличения угла закручивания напряжение к охватит и более глубокие слои за-332  [c.332]


Эпюры касательных напряжений на малой и большой полуосях эллипса показаны на рис. 8.6. Если а=Ь, то постоянная А = 0 и <р=0, Ыз=0. В этом случае мы имеем задачу о кручении круглого стержня радиусом а.  [c.180]

В случае кручения стержня сплошного круглого сечения или в форме толстостенной трубы предположение о равномерном распределении напряжений по радиусу, использованное в предыдущем параграфе, неприменимо. Для установления распределения напряжений при заданном внешнем крутящем моменте используем гипотезу плоских сечений и предположение, что радиальные волокна остаются при деформации радиальными. При этом каждое поперечное сечение поворачивается около оси стержня как целое, так что касательных напряжений между соосными цилиндрами, на которые можно мысленно разрезать рассматриваемый стержень, не возникает. Поэтому можно утверждать  [c.111]

Следовательно, каждая половина стержня испытывает кроме изгиба еще и кручение, причем величина скручивающего момента такова, что он удерживает от поворачивания вертикальный диаметр полукруглого поперечного сечения. Имея выражения для касательных напряжений в случае изгиба круглого стержня и в случае кручения стержня полукруглого сечения, получаем вычитанием распределение касательных напряжений при изгибе стержня полукруглого сечения, у которого диаметр полукруга параллелен направлению силы.  [c.278]

Вообще говоря, задачу о кручении стержня с полым сечением решить труднее, чем в случае сплошного сечения, так как при этом должны быть выполнены еще граничные условия на внутреннем контуре, ограничивающем полость. Лишь в том случае, если внутренний контур совпадает с траекторией касательных напряжений сплошного сечения с одинаковым наружным контуром, эта лишняя трудность отпадает, и решение задачи можно получить непосредственно из решения для сплошного сечения. Об этом уже была речь раньше, и в 65 были выведены формулы для круглого и эллиптического полых сечений, в случае которых указанное предположение выполняется. Во всех же других случаях и даже в случае полого сечения, ограниченного и внутри и снаружи кругами, но расположенными эксцентрично, задача о кручении становится много сложнее, чем для соответствующего сплошного сечения..  [c.87]

Так, например, легко видеть, что выражения для касательного напряжения и угла закручивания круглого стержня удовлетворяют требованиям теоремы о циркуляции, поэтому найденное для круглого сечения решение является точным. Теория упругости устанавливает дифференциальные уравнения в частных производных, которым удовлетворяют напряжения при кручении стержня произвольного поперечного сечения. Существуют методы решения этих уравнений, позволяющие исследовать вопрос о кручении стержня эллиптической, секториальной, прямоугольной и многих других форм поперечных сечений. Величины, которые нас практически интересуют,— это угол закручивания в зависимости от крутящего момента и наибольшее касательное напряжение. Для всех случаев, как рассмотренных нами элементарно, так и изученных методами теории упругости, результаты можно представить в следующей форме  [c.199]


Особенностью чистого кручения любых профилей является возникновение в поперечных (и продольных) сечениях лишь касательных напряжений. Но в отличие от цилиндрического стержня круглого сечения при кручении некруглых профилей поперечные сечения стержня перестают быть плоскими, искривляются, наблюдается, как говорят, депланация сечений. В этом случае кручения некруглых профилей гипотеза плоских сечений неприменима, что значительно осложняет решение, которое осуществляется лишь методами теории упругости.  [c.119]

Свободным, или, иначе, нестесненным кручением призматического стержня называют деформацию, возникающую в случае, если к каждому из его торцов приложены поверхностные тангенциальные силы, статическим эквивалентом которых является лишь момент, действующий, разумеется, в плоскости торца. Моменты на противоположных торцах равны по величине и противоположны по направлению. Никакие связи на скручиваемый брус не накладываются (деформация его ничем не стеснена). В случае круглого или кругового кольцевого поперечного сечения скручиваемого бруса при определенном законе распределения тангенциальных поверхностных сил на торцах торцы и все поперечные сечения остаются плоскими. Такой частный случай свободного кручения называется чистым кручением. В случае любого другого поперечного сечения, кроме указанных выше, плоскость поперечного сечения под влиянием кручения искривляется— йе/гламирг/еш (перестает быть плоской) при одном определенном для каждого вида поперечного сечения законе распределения касательных сил на торцах и таком же законе во всех поперечных сечениях депла-нация всех поперечных сечений оказывается одинаковой. Из сказанного ясно, что при свободном кручении призматического бруса нормальные напряжения в поперечных сечениях отсутствуют.  [c.14]

Применение к стержню пружины формулы (75), определяющей наибольшие касательные напряжения при кручении прямого бруса круглого сечения, в значительной мере условно. Однако при практически применяемых для пружин отношениях Did погрешность невелика. В случае необходимости результат вычисления напряжений можно уточнить путем введения в расчетную формулу для кшах поправочного коэффициента k, который может быть определен по приближенной формуле  [c.204]

В инженерной практике довольно часто кручению подвергаются стержни, имеющие не круглое, а прямоугольное, треугольное, эллиптическое и другие сечения. В этих случаях гипотеза плоских сечений неприменима, так как сечения искривляются (депланируют). Точные расчеты стержней некруглого сечения можно получить методами теории упругости. Однако поскольку в настоящем курсе нет возможности их изложить, приведем здесь только некоторые окончательные результаты. Отметим при этом, что в стержнях произвольного сечения, как и в стержнях круглого сечения, касательные напряжения при кручении направлены по касательной к контуру.  [c.219]

Сопротивление Д. кручению сравнительно редко встречается в практике. В качестве примера можно указать на деревянные мельничные валы,. пропеллеры в самолетостроении, причем последний случай работы Д. является весьма ответственным. Сопро ивление Д. кручению изучено сравнительно мало. Для испытаний на кручение необходимы специальные машины, дающие возможность осуществить крутящий момент. Образцы обычно имеют круглое сечение (точеное) с утолщенными головками квадратного сечения, которыми образцы укрепляются в бабках машины. При скручивании круглого стерукня в нем возникают касательные напряжения в плоскостях перпендикулярной и параллельной оси стержня. В однородном материале разрушение при кручении обычно происходит в виде перерезывания стержня поперек оси. В случае же скручивания образца из Д., ось к-рого совпадает с направлением волокон, разрушение всегда происходит вследствие образования продольных трещин от скалывания вдоль волокон, к-рое значительно меньше сопротивления перерезыванию поперек волокон. В конечном итоге сопротивление Д. кручению определяется ее сопротивлением скалыванию. Предел пропорционально1 ти при кручении (по Бобарыкову и Губеру) составляет не.многим более половины временного сопротивления для Д. хвойных и ок. 1/з для Д. лиственных. Временное сопротивление кручению (по Губеру) показано в табл. 12.  [c.105]


При исследовании кручения значения нормальных напряжений Ov = Ог могут оказаться весьма существенными. Кручение называется свободным, если роль нормальных напряжений в общей деформации бруса мала в сравнении с ролью касательных напряжений. В противном случае кручение называется стесненным. Стесненность кручения связана со стеснением депланацин поперечных сечений. Например, полый круглый стержень (тонкостенный стержень замкнутого профиля) испытывает свободное кручение без депланации поперечных сечений, как показано на рис. 13.3, а. Этот же стержень, будучи разрезанным вдоль одной из образующих открытый профиль), под действием тех же моментов закручивается с расхождением краев разреза в направлении оси, что приводит к депланации поперечных сечений. В этом случае значения малы и кручение остается свободным, при котором продольные (параллельные оси стержня) волокна не изменяют своей длины (рис. 13.3, б). Однако, если у того же разрезанного вдоль образующей стержня-трубки закреплен один на концов, а к другому приложен крутящий момент, характер напряженно-деформированного  [c.292]

Рассмотрим, в частности, изгиб и кручение стержня круглого сечения. Так как в этом случае наибольшее касательное напряжение от изгиба всегда меньше половины наибольшего нормального, то нетрудно видеть, что опасной точкой является наиболее удаленная от нейтральной оси точка сечения, в котором М = Мшах (если Мк постоянно по длине стержня). В этой точке  [c.261]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Смотреть страницы где упоминается термин Напряжении касательные кручении в случае круглого стержн : [c.361]   
Прочность и колебания элементов конструкций (1975) -- [ c.270 ]



ПОИСК



I касательная

Касательные напряжения круглого

Кручение круглое

Напряжение в кручении

Напряжение касательное

Напряжения Напряжения касательные



© 2025 Mash-xxl.info Реклама на сайте