Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Высокохромистые стали

Таблица 64. Составы, основные свойства высокохромистых сталей Таблица 64. Составы, <a href="/info/347408">основные свойства</a> высокохромистых сталей

При выборе вида сварки, сварочных материалов и режимов сварки высокохромистых сталей, особенно жаропрочных, необходимо учитывать, что даже небольшие отклонения в химическом составе металла швов (но ряду элементов в пределах десятых долей процента) могут приводить к значительному изменению их служебных свойств. Причиной этому, как правило, является гетерогенность структуры металла (например, наличие зерен структурно-свободного феррита в сорбитной основе отпущенного мартенсита).  [c.266]

СПАРКА МАРТЕНСИТНЫХ И МАРТЕНСИТНО-ФЕРРИТНЫХ ВЫСОКОХРОМИСТЫХ СТАЛЕЙ  [c.266]

При выборе сварочных материалов для сварки ферритных высокохромистых сталей необходимо учитывать возможное отрицательное проявление различия в коэффициентах теплового рас-ши])еиия основного металла и металла швов. Заметное различие коэффициентов теплового расширения основного металла и металла швов приводит к накоплению локальных деформаций после каждого цикла нагрева и охлаждения.  [c.278]

Необходимую высокую твердость стали типа XI2 можно получить, закаливая ее от высоких температур (1,150°С) в масле и получая, следовательно, большое количество остаточного аустенита, а затем путем обработки холодом и отпуска добиваться разложения остаточного аустенита и получать высокую твердость (>HR 60). Такой метод обработки на так называемую вторичную твердость, применяемый для быстрорежущей стали, принят и при обработке высокохромистых сталей. Но чаще сталь типа Х12 закаливают с температур, дающих наибольшую твердость после закалки (от 1050—1075°С) и последующего низкого отпуска (при 150— 180°С). Твердость в обоих случаях одинаковая (HR 61—63), но в первом случае сталь обладает более высокой красностойкостью, а во втором — большей прочностью.  [c.436]

Стали, приведенные в табл. 70, в основном являются котельными и главным образом их применяют в виде труб. Если к свариваемости не предъявляют особых, требований, то можно применять высокохромистые стали с высоким содержанием кремния, так называемые сильхромы.  [c.469]

Сг и 0,45% С). Из кривой, приведенной на рис. 131, видно, что с увеличением диаметра зерна скорость межкристаллитной коррозии высокохромистой стали также возрастает. Минимальная опасная температура в отношении межкристаллитной кор])о-зии для ферритных сталей с 22 V,, Сг 900" С, с 25% Сг 1000" С, а с 27% Сг 1100°С.  [c.166]

Сг (1% С связывает около 10% Сг). Таким образом происходит сильное обеднение твердого раствора хромом, и в большинстве случаев содержание свободного хрома в высокохромистых чугунах не выходит за пределы первого порога устойчивости. Этим объясняется сравнительно невысокая коррозионная стойкость этих чугунов по сравнению с высокохромистыми сталями. При увеличении содержания хрома свыше 35— 36% твердость высокохромистых сплавов значительно повышается, что ухудшает их обрабатываемость. Кроме того, при содержании хрома свыше 40% эти чугуны становятся хрупкими вследствие выделения при медленном охлаждении б-фазы (интерметаллического соединения РеСг).  [c.243]


Чугун Х28 при содержании углерода до 1 % после отжига может подвергаться холодной обработке резанием для чугуна Х34, с более высоким содержанием углерода, такая обработка связана с определенными трудностями. Небольшие добавки кремния (1—2%) улучшают механическую обрабатываемость высокохромистых сталей.  [c.244]

Аустенитно-ферритные жаростойкие стали. В связи с легированием высокохромистых сталей различными элементами (а также аустенитообразующими элементами типа N1) значительное применение получили многие аустенитно-ферритные стали.  [c.209]

Аустенитно-ферритные стали обладают большей жаропрочностью по сравнению с высокохромистыми сталями. Основным требованием к этим сталям является стабильность их строения. Изменение свойств некоторых аустенитно-ферритных сталей при обычной температуре в зависимости от их структуры представлено на рис. 13.8, а длительной прочности при 600° С — на рис. 13.9.  [c.209]

Быстрорежущие стали, кроме того, должны обладать высокой красностойкостью, прочностью и износоустойчивостью при сравнительно высоких температурах, возникающих в процессе резания (этими же качествами могут обладать и высокохромистые стали).  [c.234]

Высокохромистые стали применяют для крупных штампов сложной формы, работающих при повышенных нагрузках и износе. Эти стали в литом состоянии содержат эвтектику, выделяющуюся в процессе кристаллизации по границам зерен твердого раствора.  [c.243]

Рис. 14.10. Механические свойства высокохромистых сталей Рис. 14.10. <a href="/info/70401">Механические свойства высокохромистых</a> сталей
Повыщенная жаропрочность высокохромистых сталей обусловлена содержанием тугоплавких карбидов Сг. Они сохраняют необходимую для подшипников твердость > НКС 60) до 300—350 С.  [c.546]

К межкристаллитной коррозии склонны высоколегированные стали всех классов, имеющие высокое содержание хрома, вследствие выпадения под действием нагрева карбидов хрома по границам зерен, обеднения границ зерен хромом и из-за этого пониженной стойкости границ против коррозии. Опасность межкристаллитной коррозии возникает при нагреве хромоникелевых сталей аустенитного и аустенитно-ферритного классов до температур 500—850°С, при нагреве высокохромистых сталей мартенситного, мартенситно-ферритного и ферритного классов до температур свыше 950°С.  [c.126]

АНАЛИЗ ХАРАКТЕРА ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПЛАЗМЕННОЙ СТРУИ ТЕХНОЛОГИЧЕСКИХ ИСТОЧНИКОВ ПЛАЗМЫ НА ВЫСОКОХРОМИСТЫЕ СТАЛИ АУСТЕНИТНОГО И МАРТЕНСИТНОГО КЛАССОВ  [c.101]

При комнатной температуре хром заметно упрочняет сталь, а при температурах 1100—1200° С, наоборот, высокохромистые стали обладают пониженным сопротивлением деформации.  [c.475]

Для высокохромистых сталей ферритного класса значение п заметно выше, чем у сталей перлитного класса.  [c.476]

Весьма благоприятные металлургические условия при сварке высокохромистых сталей создает сварка в инертных защитных газах, как правило, в аргоне и в некоторых смесях на его основе. Причем в основном используют сварку неплавящимся вольфрамовым электродом, а присадочный материал подбирают аналогичным желаемому составу наплавленного металла. При этом виде сварки в шоп удается вводить почти без потерь такие весьма активные элементы (улучшающие свойства металла шва), как титан и алюминий. Однако по причинам понижения производительности сварки и ее низкой экономичности применение этого метода обычтю ограничивается изготовлением изделий малых толщин и выполнением корневого валика в многослойных швах металла больших толщин, например в изделиях турбостроения.  [c.265]

Сварка под флюсом также требует разработки специальных сварочных материалов. Широко применяемые окис.пительные высококремнистые, высокомарганцовистые флюсы не пригодны для сварки высокохромистых сталей в связи с происходящими при 8Т0М процессами окисления не только активных легирующих  [c.265]


Фторидные бескислородные флюсы не обеспечивают достаточно xopoHiero формирования швов. Поэтому для сварки высокохромистых сталей рекомендуется применение либо безокислительного, высокоосновного флюса 48-ОФ-6, почти не изменяющего в процессе плавления состава электродной проволоки, либо слабо-окислительного (за счет введения в низкокремнистый флюс некоторого количества окислов железа) флюса АН-17 в комбинации со специальными проволоками 15Х12НМВФБ и 15Х12ГНМВФ. В связи с тем, что при флюсе 48-ОФ-6 выгорание легирующих элементов меньше, чем при флюсе АН-17, прочность и длительная прочность металла швов, выполненных с флюсом 48-Od>-6, выше, но при меньшей длительной пластичности. Для увеличения их длительной пластичности требуется в этом случае менее легированная электродная проволока.  [c.266]

Технические свойства электродов из высокохромистых сталей определяют и свойства металла швов сварных соединений из сталей подобного состава. При применении хромоникелевых электродов, в связи с отличием химического состава наплавлеппого металла от основного, свойства металла шва значительно отличаются от свойств как основного, так и наплавленного металлов (табл. 68).  [c.275]

В связи со значительными трудностями в изготовлении крупногабаритных сварных изделий из высокохромистых сталей их часто заменяют хромоникелевыми ферритно-аустенитиыми, имеющими 50% ферритной составляющей в структуре.  [c.278]

Высокохромистые стали являются сталями ледебурнтного класса, так как в литом виде первичные карбиды, выделяющиеся во время затвердевания стали, образуют эвтектику — ледебурит. Однако при ковке эвтектика разбивается, и в отожженном после ковки состоянии структура должна состоять из сорбитообразиого перлита с включениями избыточных карбидов.  [c.435]

Хром, алюминий и кремний (см. рис. 98) сильно замедляют окисление железа из-за образования высокозащитных окисных пленок. Эти элементы широко применяют для легирования стали в целях повышения ее жаростойкости. Хром, введенный в сталь в количествах до 30%, значительно повышает жаростойкость, но высокохромистые стали являются ферритными и трудно поддаются термообработке в отличие от мартенситных и полуферритных низкохромистых сталей. Алюминий и кремний, которые вводят в сталь в количестве соот-0 и 5%, еще сильнее повышают ее жаростойкость.  [c.137]

Склонность к межкристаллитной коррозии чаще всего возникает при распаде некоторых твердых растворов в определенных условиях. Так, например, высокохромистые стали приобретают склонность к межкристаллитной коррозии после пх быстрого охлаждения от температур, превышающих 900° С подверженность латуни к межкристаллитному разрушению зависит от природы и структуры сплава, а также характера агрессивной среды свинец даже высокой чистоты имеет склонность к межкристал-лнтпон коррозии вследствие роста зерна медноалюмшшевые сплавы приобретают склонность к межкристаллитной коррозии вследствие выделения при искусственном старении интерметаллических соединений и др.  [c.163]

Высокохромистые стали Х12Ф1 и Х12М относятся к ледебурнт-иому классу они содержат 16—17 % карбидов (Сг, Fe)7 . Стали обладают высокой износостойкостью н ири закалке в масле мало деформируются, что важно для штампов сложной формы.  [c.304]

Сталь Х6ВФ имеет меньшую карбидную неоднородность по сравнению с высокохромистыми сталями, однако уступает им по прокали-ваемости и теплостойкости применяется она для штампов сравнительно небольших размеров.  [c.245]

К первой группе относятся высокохромистые стали типа Х12М и Х12Ф1, коррозионно-стойкие хромистые стали с присадками Мо (зарубежная марка 440С), легированные инструментальные стали типа ХВГ и ХВ4 и сильхромы (табл. 47).  [c.546]


Смотреть страницы где упоминается термин Высокохромистые стали : [c.262]    [c.264]    [c.264]    [c.265]    [c.271]    [c.271]    [c.276]    [c.314]    [c.314]    [c.317]    [c.416]    [c.420]    [c.163]    [c.166]    [c.280]    [c.289]    [c.49]    [c.475]    [c.71]    [c.635]   
Смотреть главы в:

Металловедение и термическая обработка  -> Высокохромистые стали

Сварка жаропрочных нержавеющих сталей  -> Высокохромистые стали


Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.119 ]



ПОИСК



Высокохромистые нержавеющие стали (типа

Высокохромистые нержавеющие стали чугуны

Высокохромистые стали Х25Т и Х28 ферритного класса

Высокохромистые стали мартенситного, мартенсито-феррнтиого и ферритио-аустенитного классов

Высокохромистые стали повышенной чистоты по примесям внедрения

Высокохромистые стали полуферрит ного и ферритного классов

Высокохромистые стали с присадками различных элеменХромоникелевые стали

Высокохромистые стали ферритного класса

Высокохромистые стали ферритного класса (на примере сталей

Низкотемпературное цианирование быстрорежущей и высокохромистой инструментальной стали

Определение карбидной фазы в высокохромистой ферритной стали

Отливки фасонные из высокохромистой стали

Питание Размеры Допускаемые из высокохромистой стали—Механические свойства 171 — Химический состав

Стали аустенитного высокохромистые

Стали для наплавки высокохромистые

Стали конструкционные сплавы и Высокохромистые

Тарасов А. Н АНАЛИЗ ХАРАКТЕРА ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ ПЛАЗМЕННОЙ СТРУИ ТЕХНОЛОГИЧЕСКИХ ИСТОЧНИКОВ ПЛАЗМЫ НА ВЫСОКОХРОМИСТЫЕ СТАЛИ АУСТЕНИТНОГО И МАРТЕНСИТНОГО КЛАССОВ



© 2025 Mash-xxl.info Реклама на сайте