Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение в конструкции при высоких скоростях нагружения

Ценную информацию о сопротивлении конструкционных материалов хрупкому разрушению можно получить при ударном растяжении цилиндрических образцов с кольцевыми треш инами. Такие испытания (особенно при низких температурах) — жесткие условия для деформирования материала. Результаты испытаний являются важными показателями работоспособности материала в экстремальных условиях его работы (высокие скорости нагружения, низкие температуры, предельно-острые концентраторы напряжений). Ударному растяжению цилиндрических образцов с надрезами уже давно уделяется значительное внимание [29, 39, 1491 при выборе материала для конструкций, предназначенных для работы в экстремальных условиях. Однако ударные, испытания цилиндрического образца с кольцевой  [c.171]


Поскольку скорость трещины влияет на степень релаксации напряжений, она определяет и меру влияния приложенных к конструкции нагрузок на распространение разрушения. Релаксация напряжений более затруднена при больших скоростях трещин, и сохранение высоких уровней напряжений, следовательно, более вероятно, если трещина будет распространяться по механизму отрыва. Вид нагружения также играет большую роль в процессе релаксации. При не жесткой нагружающей системе напряжения не (будут релаксировать независимо от скорости трещины, тогда как при жесткой системе нагружения, а такие условия достигаются во многих испытаниях лабораторных образцов, напряжения могут легко релаксировать во время распространения трещины.  [c.135]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Большинство конструкций, работающих при высоких температурах, проектируется таким образом, что в течение всего срока эксплуатации материал находится в стадии установившейся ползучести или даже в переходной стадии (т. е. в условиях, когда ползучесть описывается кривой 1 на рис. 1). При проектировании конструкций часто пользуются понятием предела ползучести . Эта величина в какой-то мере зависит от стационарной или минимальной скорости ползучести, поскольку определяется как напряжение, вызывающее допустимую деформацию (обычно 2—5%) после 100- или ЮОО-ч нагружения. Допустимые напряжения при более продолжительных экспозициях определяют, как правило, путем экстраполяции, например по методу Ларсона и Миллера [12]. Следовательно, при таких нагрузках, когда основным типом деформации является ползучесть, стойкость к ползучести означает низкую установившуюся скорость деформации или, наоборот, высокое значение предела ползучести (при условии достаточно малых первичных деформаций).  [c.11]


При интенсивных термомеханических и динамических воздействиях в наиболее нагруженных элементах конструкций АЭУ, в зонах их конструктивных неоднородностей возможно возникновение пластических деформаций. На зависимости между напряжениями и деформациями в этом случае заметное влияние оказывают уровни температур и скорости деформирования. Влияние скоростей деформирования становится особенно существенным при высоких температурах и радиационном облучении [33, 34].  [c.100]

Таким образом, для получения удовлетворительных результатов требуются не только заданные геометрические пропорции в испытываемых образцах и реальных элементах конструкций, но и одинаковая скорость нагружения, так как при низкоскоростном изгибе высокая концентрация напряжений у краев образца может успевать диссипировать в результате ползучести матрицы, а при высокоскоростном — не успевать, что приведет к понижению в последнем случае эффективной межслоевой прочности. Это было продемонстрировано в работе [ИЗ], в которой измеряли зависимость динамической (ударной) сдвиговой прочности от скорости нагружения (рис. 2.60).  [c.123]

Импульсное нагружение представляет собой кратковременное термосиловое воздействие с высокой концентрацией энергии. В слоистой конструкции будут возникать и распространяться волны напряжений, претерпевая многочисленные преломления и отражения от границ слоев. Соответствующий точный анализ напряженно-деформированного состояния слоистой оболочки при учете внутренней картины волновых явлений возможен при использовании динамических уравнений теории упругости. Однако реализация такого подхода чрезвычайно затруднительна. Используемые здесь линейные уравнения (9.1), основанные на гипотезе прямых нормалей для несущих слоев, правильно описывают распространение волн деформаций срединной поверхности, но искажают фазовую скорость изгибных волн, которая при уменьшении длины волны будет неограниченно возрастать. В действительности с большой скоростью движутся короткие волны малой амплитуды, которые из-за демпфирования в оболочке можно не учитывать. Волны, несущие основную энергию изгиба, имеют достаточно большую длину, движутся с конечной скоростью и вполне правильно описываются классическими уравнениями. Поэтому даже на основе линейной теории оказывается возможным выявить в первом приближении основные закономерности нестационарного поведения трехслойной оболочки при импульсном нагружении [286].  [c.491]

При высоких скоростях нагружения существенно повышается прочность стеклопластмасс, так как за время, необходимое для разрушения, напряжение успевает достигнуть намного больших значений, чем при очень медленном нагружении. В этом явлении кроется возможность использования повышенных значений прочности в расчетах конструкций, подвергаемых кратковременным импульсам нагрузки. Но при разработке методик расчетов на прочность, учитывающих динамические свойства стеклопластмасс, встречаются значительные трудности.  [c.71]

В последние десятилетия в машиностроении широко используются высокопрочные, малопластичные материалы, а также материалы средней прочности, которые, вообще говоря, достаточно пластичны при обычных условиях. Такие материалы в процессе эксплуатации при наличии различных охрупчивающих факторов (высоких скоростей нагружения, наводороживания, облучения, различных концентраторов напряжений и т. п.), как правило, склонны к хрупкому разрушению, а именно к разрушению путем спонтанного распространения трещины без заметных предварительных пластических деформаций. Поэтому при оценке работоспособности материала в конструкции необходимы данные  [c.5]

Какой из выбранных двух признаков считать основным Это зависит от назначения склеиваемого элемента конструкции. В изгибаемых многослойных пластинах, балках и оболочках основным признаком будет сопротивление переходу трещин из одного слоя в другой. Действительно, если металлический слой подвергается переменному (циклическому, случайному и т.п.) нагружению, то с его поверхности вглубь обычно развивается усталостная трещина. Скорость ее роста зависит от коэффшщен-та интенсивности напряжений у края трещины. При выходе трещины на границу слоев дальнейшее ее развитие может происходить двояко в зависимости от свойств клея и тормозящего материала. Если клей недостаточно прочен, то трещина пойдет по границе слоев и раздвоится при этом коэффициент интенсивности напряжений в конце трещины уменьшается в несколько раз, что существенно задержит время перехода трещины из одного слоя в другой. Если клей весьма прочен, то трещина сразу перейдет из одного слоя в другой, не раздваиваясь. Очевидно, клеи, вызывающие раздваивание трещины, лучше поэтому клеи, не обладающие этим свойством, следует исключить из рассмотрения. Оставшиеся клеи наиболее целесообразно сравнивать по сопротивлению сдвигу (наиболее опасным при раздвоении трещин 5голяется расслаивание клееной конструкции от сдвиговой нагрузки). Клеи, для которых сопротивление сдвигу достаточно высоко, следует сравнивать по стоимости и выбрать наиболее дешевый.  [c.231]


Запасы по разрушающим нагрузкам (при изготовлении, монтаже и эксплуатации конструкций) назначаются в пределах 1,5—2, а запасы по коэффициентам интенсивности напряжений и деформаций — в пределах 1,7—2,2. Большие из указанных запасов выбирают для циклически нагружаемых элементов конструкции, изготовляемых из хладноломких малоуглеродистых сталей или сталей повышенной прочности и низкой пластичности, чувствительных к концентрации наг яжений, скорости деформирования и обладающих повышенным разбросом характерисгик сопротивления разрушению. Повышенные запасы прочности принимают для элементов конструкций, определение эксплуатационной нагруженности которых затруднено в силу сложности конструктивных форм, наличия высоких остаточных напряжений (например, от сварки и монтажа), возникновения нерасчетных статических и динамических перегрузок. Для таких элементов конструкций обычно затруднено проведение надлежащего дефектоскопи ческого контроля при их изготовлении и эксплуатации. В этом случае запасы по нагрузкам должны быть более высокими — до 2,5.  [c.77]

Последующее развитие техники полностью подтвердило справедливость мнения В. Л. Кирпичева с существенными уточнениями пластичность необходима не только при наличии ударов, но часто при статических нагружениях для элементов конструкций важна прежде всего местная, а не общая пластичность полезное влияние (увеличение локального энергопоглощения) могут оказывать местные неупругие деформации разной природы, а не только пластические, например вязкие. Выход за пределы чисто упругого состояния вызывается общими или локальными явлениями, существенно повышающими энергопоглощение пластическими или вязкими сдвигами, двойникованием, диффузионными и дислокационными процессами, перемещениями вакансий и т. д. При этом существенно увеличивается скорость нарастания деформаций и соответственно возрастает величина деформации. Например, у сталей наибольшее упругое удлинение имеет величину порядка 1 % (за исключением нитевидных кристаллов, упругое удлинение которых может достигать 5% и более), в то время как наибольшая пластическая деформация достигает десятков процентов. Большинство расхождений между выводами из расчетов теории упругости и сопротивления материалов с результатами механических испытаний и опытом эксплуатации Изделий является следствием проявления неупругих состояний. Эти проявления могут быть как полезными, способствующими местному благоприятному перераспределению напряжений при выходе за пределы упругого состояния, так и вредными чрезмерная общая деформация изделий вследствие текучести и ползучести, затрудненная обработка резанием ввиду высокой вязкости, плохая прирабатываемость и наволакивание материала при трении и т. п.  [c.107]

Создание конструкций высоких параметров, больших мощностей и размеров потребовало разработки вопросов прочности при циклическом нагружении в упруго-пластической области. В этих условиях в наиболее напряженных зонах узлов и деталей происходит существенное изменение закономерностей деформирования и условий образования и распространения трещин циклического нагружения. Это связано с тем, что при указанных уровнях нагрузок, соответствующих сравнительно "малому (до 10 —10 ) числу циклов до разрушения, наблюдается перераспределение по числу циклов упруго-пластических деформаций, зависящее от условий нагружения (неоднородность напряженного состояния, температура, скорость деформирования и др.) и от циклических свойств материалов. Процессы образования и развития трещин малоциклового нагружения в общем случае протекают на фоне накопления однонаправленных и циклических пластических деформаций, причем описание ведется на основе соответствующих критериев малоциклового разрушения. Нестационарность  [c.410]


Смотреть страницы где упоминается термин Напряжение в конструкции при высоких скоростях нагружения : [c.12]    [c.252]    [c.16]    [c.43]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.178 ]



ПОИСК



Конструкция напряжений

Скорость нагружения



© 2025 Mash-xxl.info Реклама на сайте