Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера уравнения динамики идеальной жидкости

Это — уравнения Эйлера динамики идеальной жидкости.  [c.151]

Если в уравнениях (1-32) положить v=0, т. е. рассматривать идеальную жидкость, то получим уравнения динамики невязкой жидкости в форме уравнений Эйлера.  [c.24]

Ур-ние Эйлера, связывающее скорость течения жидкости с давлением, вместе с неразрывности уравнением, выражающим закон сохранения вешества, позволяют решать любые задачи динамики идеальной жидкости, то есть жидкости, лишённой вязкости и теплопроводности. В гидродинамике вязкой жидкости учитываются действие  [c.314]


Таковы уравнения Эйлера динамики идеальных жидкости или газа. По тем же соображениям, что и в 11, вывод уравнений Эйлера в прямоугольных криволинейных координатах не составляет труда. Для этой цели, в частных случаях цилиндрической и сферической систем координат, достаточно вспомнить формулы (48) и (49) гл. I для проекций ускорения на оси прямоугольных криволинейных координат и соответствующие этим координатам формулы проекций градиента скалярной функции (III.18) и (III.19). Уравнениям Эйлера можно придать иной, полезный для дальнейших выводов вид, указанный И. С. Громека и Г. Ламбом. Для вывода этого  [c.89]

Период развития механики после Ньютона в значительной мере связан с именем Л. Эйлера (1707— 1783), отдавшего большую часть своей исключительно плодотворной деятельности Петербургской Академии наук, членом которой он стал в 1727 г. Эйлер развил динамику точки (им была дана естественная форма дифференциальных уравнений движения материальной точки) и заложил основы динамики твердого тела, имеющего одну неподвижную точку ( динамические уравнения Эйлера ), нашел решения этих уравнений при движении тела по инерции. Он же является основателем гидродинамики (дифференциальные уравнения движения идеальной жидкости), теории корабля и теории упругой устойчивости стержней. Эйлер получил ряд важных результатов и в кинематике (достаточно вспомнить углы и кинематические уравнения Эйлера, теорему о распределении скоростей в твердом теле). Ему принадлежит заслуга создания первого курса механики в аналитическом изложении.  [c.11]

Как было указано в 1 главы I, динамика идеальной жидкости была. разработана знаменитым математиком и механиком, членом Российской Академии Наук Л. Эйлером в 1755 г., впервые давшим основные дифференциальные уравнения ее движения.  [c.81]

Таковы уравнения Эйлера динамики идеальной жидкости или газа. Уравнениям Эйлера можно придать иной, полезный для дальнейших  [c.112]

Приложения к динамике идеальной жидкости. Уравнение Эйлера, описывающее течение идеальной жидкости в потенциальном силовом поле, имеет следующий вид  [c.41]

При любом макроскопическом подходе к динамике жидкости приходится постулировать (на основе экспериментов или правдоподобных рассуждений) некоторые феноменологические соотношения (так называемые определяющие уравнения) между pij, Qi, с одной стороны, и р, Vi, в — с другой. В случае газа или вообще жидкости существуют две хорошо известные модели жидкость Эйлера (или идеальная)  [c.101]


Анализ бесконечно малых величин в приложении к задачам механики впервые применил знаменитый математик и механик XVIII в., член Россййской Академии наук Леонард Эйлер (1707—1783). Он написал 43 тома сочинений н более 780 статей. Большое число его выдающихся трудов относится к задачам механики. Эйлером был создан фундаментальный труд по аналитической динамике точки и твердого тела. С большой ясностью и полнотой Эйлер разработал задачи о движении твердого тела около неподвижной точки. Полученные Эйлером в этих задачах формулы, известные под названием эйлеровых, вошли во все современные курсы теоретической механики. Эйлера следует считать и основателем гидродинамики, так как он впервые вывел основные уравнения движения идеальной жидкости.  [c.7]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

Математическая запись принципа ускоряющих сил, выраженного во втором законе движения, в алгебраической или в векторной форме, не зависит от выбора той или иной инерциальной системы отсчета. Л.Эйлер разработал аналитический аппарат механики (дифференциальные уравнения движени5Г), дав систематическое изложение динамики материальной точки, твердого тела, идеальной жидкости. Он придавал чрезвычайно большое значение концепции Ньютона о пространстве и времени Всякий, кто склонен отрицать существование абсолютного пространства, придет в величайшее смущение. В самом деле, вынужденный отбросить абсолютный покой и движение, как пустые слова, лишенные смысла, он должен будет не только отбросить законы движения, покоящиеся на этом принципе, но и допустить, что вообще не может быть никаких законов движения. ..пришлось бы утверждать, что все происходит случайно и без всякой причины [7. С. 328].  [c.12]

Отметим принципиально важную особенность, относящуюся только к идеальной жидкости. Как следует из уравнений Эйлера (1.39), для консервативных внешних сил и при несжимаемости жидкости имеем уравнение rot а — 0. Оно называется условием Д Аламбера — Эйлера и в эйлеровых координатах необходимо и достаточно для движения, сохраняющего циркуляцию. В лагранжевых переменных его аналогом выступает условие Ханкеля — Аппеля Rot (Grad х а) — 0. Приняв эти уравнения в качестве аксиом, были решены мнсие задачи динамики завихренности для несжимаемой жидкости путем последовательного кинематического анализа без помощи динамических уравнений [250]. Несмотря на некоторую неизбежную формальность и искусственность, красоту такого построения стоит оценить и сейчас.  [c.39]


Смотреть страницы где упоминается термин Эйлера уравнения динамики идеальной жидкости : [c.284]    [c.348]    [c.283]   
Курс теоретической механики. Т.2 (1983) -- [ c.151 ]



ПОИСК



283 — Уравнения жидкости

70 - Уравнение динамики

Динамика жидкости

Динамика идеальной жидкости

Жидкость идеальная

УРАВНЕНИЯ ДИНАМИКИ ИДЕАЛЬНОЙ ЖИДКОСТИ

Уравнение Эйлера

Уравнения Эйлера идеальной жидкости

Эйлер

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте