Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система координат абсолютная криволинейная

Криволинейные системы координат. Переменный местный координатный базис. Абсолютный дифференциал и абсолютная производная векторной функции скалярного аргумента  [c.91]

В 46 мы рассмотрели абсолютные дифференциалы векторных функций и криволинейных координатных системах. Применяя формулу (II.60), мы получим следующее выражение контравариантных компонент абсолютной производной от векторной функции а(б, определенной в криволинейной системе координат  [c.135]


Интенсивность тензора. Тензор ставится в соответствие какой-либо физической величине, которую он характеризует однозначно. Интенсивность тензора есть скалярная величина, которая хотя и не однозначно, но в значительной степени характеризует физическую величину. Интенсивность тензора Г — неотрицательная величина корня квадратного из абсолютной величины второго инварианта девиатора. Учитывая (1.95)—(1.97), получим формулы для Тщ в индексной записи и в подробной записи в произвольной криволинейной системе координат, в прямоугольной декартовой и в главной системе координат  [c.48]

Пусть абсолютная (неподвижная) криволинейная система координат задана базисными векторами х Х ) компоненты вектора А в этой системе обозначим как А 1, х х Х ),  [c.314]

Связь между абсолютной производной вектора, определенного в подвижной системе декартовых координат, и абсолютной производной вектора, определенного в криволинейной неподвижной системе  [c.135]

Чтобы избавиться от указанных недостатков и облегчить применение ЭЦВМ, выведем уравнения для определения составляющих скорости трехмерного пространственного потока в системе ортогональных криволинейных координат. Для решения задачи считаются заданными угловая скорость вращения насоса o форма проточной части гидротрансформатора в меридиональном сечении геометрия лопастных систем рабочих колес, определяемая радиусами Д, углами Р, 7 и ф (рис. 40) распределение меридиональной составляющей абсолютной скорости за одним из колес режим работы, характеризуемый передаточным отношением напор, создаваемый насосом, и расход в проточной части, определяемые предварительно расчетом по средней линии гидравлические потери в проточной части число лопастей в рабочем колесе.  [c.93]

Симметричность величин относительно индексов /г следует из правой части равенства (а). Теперь рассмотрим закон преобразования величин Первый член в правой части преобразуется как компонента смешанного тензора второго ранга, так как величины 6, совпадают со смешанными компонентами метрического тензора, а является абсолютным скаляром. Что касается второго члена, то следует отметить, что радиус-вектор в криволинейной системе координат нужно считать определенным своими компонентарли в местном координатном базисе начало местной координатной системы должно совпадать с началом радиуса-вектора. Зная модуль радиуса-вектора и его направление относительно упомянутой местной координатной системы, можно найти его компоненты, как это отмечалось в первом томе.  [c.78]


В 210 первого тома было упомянуто о связи между абсолютным ди( )-ференцнрованием и параллельным переносом вектора в криволинейной системе координат. Как известно, задача о параллельном переносе вектора требует введения символов Кристоф( )еля второго рода. Поэтому эти символы иногда называют параметрами параллельного переноса или коэффициентами аффинной связности. Последний термин напоминает о том, что символы Кристоффеля позволяют установить связь между значениями векторной функции в смежных точках пространства.  [c.174]

В предыдущих параграфах этой главы рассмотрены случаи обтекания тел установившимся безвихревым потоком. Полученные результаты решают одновременно и обратную задачу о движении тела с постоянной скоростью в безграничной покоящейся жидкости. Действительно, если требуется изучить закономерности движения тела в жидкости, то согласно принципу относительности Галилея—Ньютона можно всей системе тело—жидкость сообщить скорость,равную по величине и направленную противоположно скорости тела при этом все силы и напряжения в жидкости останутся неизменными. Такое обращение задачи реализуется путем перехода от абсолютной системы координат к системе, связанной с двнл<ущимся телом. Получающееся в этом случае обтекание неподвижного тела изучать удобнее и проще. Однако прием обращения движения не облегчает задачи, если тело движется по криволинейной траектории или с переменной во времени скоростью, т. е. если движение жидкости в системе координат, связанной с телом, будет неустановившимся. Задача обтекания оказывается в этом случае не более простой, чем задача о движе-  [c.317]

Поскольку в относительном движении скорость тела в направлении силы P[j не изменяется, то должна присутствовать уравнове-щивающая сила R, равная по значению Р и противоположная ей по направлению (рис. 1.2). Сила R — реальная сила взаимодействия между телом т и стержнем — реакция стержня. С другой стороны, по третьему закону Ньютона на стержень действует точно такая же, но противоположно направленная сила реакции тела. Таким образом, в результате движения тела вдоль вращающегося стержня к центру вращения, на стержень действует сила реакции тела Ri, направленная в сторону вращения и численно равная кориолисовой силе инерции 2т o>Xw. Сила Ri является реальной силой взаимодействия, поэтому она существует независимо от выбора системы координат и в абсолютном движении может совершать работу. В относительном движении ни кориолисова сила Р , ни сила реакции R работы совершить не могут, так как они всегда перпендикулярны к вектору w. Это справедливо также и для криволинейного движения тела т в относительной системе координат.  [c.11]

Систему координат, жестко связанную с некоторым абсолютно твердым телом (называемым телом отсчета), и часы, движущиеся вместе с этим телом, называют системой ожчета. В качестве системы координат в принципе можно взять любые три криволинейные коорди-  [c.10]


Смотреть страницы где упоминается термин Система координат абсолютная криволинейная : [c.136]    [c.283]    [c.224]   
Курс теоретической механики. Т.1 (1982) -- [ c.195 ]



ПОИСК



Абсолютные координаты

Координаты криволинейные

Координаты системы

Криволинейные системы координат. Переменный местный координатный базис. Абсолютный дифференциал и абсолютная производная векторной функции скалярного аргумента

Связь между абсолютной производной вектора, определенного в подвижной системе декартовых координат, и абсолютной производной вектора, определенного в криволинейной неподвижной системе

Система абсолютная

Система координат абсолютная

Система координат криволинейна



© 2025 Mash-xxl.info Реклама на сайте