Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

АСУ ТОД 228, 229 — Дисперсионный

В данной работе различные проточные дисперсные системы рассматриваются во всем диапазоне концентраций в качестве особого класса теплоносителей. Поэтому процессы массообмена и фазовых переходов из рассмотрения исключены, а структура потоков принимается двухкомпонентной и состоящей из монодисперсной среды — твердых частиц и газовой дисперсионной среды. Даже в такой постановке задача остается весьма сложной, что не позволяет в равной степени проанализировать все взаимосвязанные вопросы.  [c.5]


Будем рассматривать дисперсную среду как систему, в которой твердые частицы и газ способны взаимодействовать с внешним излучением в различных частях спектра. Это означает, что компоненты сквозного потока могут поглощать, рассеивать или пропускать тепловые лучи, а также могут обладать собственным излучением. Подчеркнем, что такого рода возможности имеются лишь в системах частицы — газ . В случаях, когда дисперсионная среда — капельная жидкость, никакого радиационного переноса быть не может (A Qt.h = AiQ =0), так как твердые тела и жидкость для тепловых лучей практически не прозрачны. В псевдоожиженных жидкостью системах в отличие от проточных все же может иметь место радиационный нагрев через свободную поверхность кипящего слоя, отсутствующую в сквозных потоках. Для газодисперсных систем изменение лучистой энергии в рассматриваемом конечном объеме элементарной ячейки дисперсного потока А п за время At определится разностью энергии поглощенного ячейкой падающего извне излучения и энергии собственного излучения этого элемента  [c.42]

Следовательно, состав стали и технология контролируемой прокатки обеспечивают получение мелкого зерна и дисперсионного твердения. Комплекс свойств близок к тому, какой получается при термическом улучшении, однако контролируемой прокаткой это достигается более простыми средствами.  [c.402]

Поясним это схемой, приведенной на рис. 345. Для сплава С/ закалкой с температуры зак получаем раствор с пересыщением, равным при комнатной и ДВг при рабочей температурах. В результате пересыщения произойдет дисперсионное твердение, эффект которого в смысле упрочнения может быть весьма различен в зависимости от типа сплава и степени развития процесса распада .  [c.461]

Термическая обработка этих сталей заключается в закалке при 1050— 1100°С в воде и отпуске —старении при 600—750 С. Этот отпуск — старение вызывает повышение твердости вследствие дисперсионного твердения избыточные фазы при старении выделяются преимущественно по границам зерен (рис. 350).  [c.471]

Жаропрочные свойства некоторых дисперсионно твердеющих аустенитных  [c.472]

Составы наиболее распространенных марок никелевых дисперсионно твердеющих сплавов приведены в табл. 77.  [c.476]

Состав дисперсионно твердеющих никелевых жаропрочных сплавов (нимоник), о/о (ГОСТ 5632—72)  [c.476]

Наряду с никелевыми дисперсионно твердеющими сплавами, некоторое применение имеют железоникелевые и кобальтовые сплавы.  [c.477]


Возможность упрочнения с помощью легирования твердого раствора для ниобиевых и танталовых сплавов значительна, тогда как растворимость большинства элементов в молибдене и вольфраме невелика и существенно повысить жаропрочность этим способом нельзя. Для указанных металлов используют дисперсионное упрочнение.  [c.529]

Дисперсионное твердение 569 Дисперсные материалы 635 Диссоциация 318  [c.643]

Влияние термической обработки на жаропрочность сплавов происходит в результате дисперсионного твердения. Дисперсионное твердение связано со старением пересыщенных твердых растворов, сопровождающимся выделением мелкодисперсных включений упрочняющих фаз (карбидов, нитридов). Эти упрочняющие фазы присутствуют как в виде раздробленных крупных частиц по границам зерен, так и в виде равномерно рассеянных внутри зерен мельчайших частичек (рис. 13.5), повышающих сопротивление пластической деформации при высоких температурах, т. е. повышающих жаропрочность.  [c.202]

Термическая обработка дисперсионно твердеющих сплавов состоит из двух последовательных операций 1) закалки с температур 1000— 1300° С для перевода выделившихся при предшествующей обработке карбидов и металлических соединений в твердый раствор 2) старения — длительной выдержки при температуре 650—850° С для выделения избыточных фаз в мелкодисперсной форме.  [c.202]

Наибольшее применение получили жаропрочные дисперсионно-твердеющие аустенитные стали (рис. 13.10). В зависимости от типа упрочнения они подразделяются на две основные группы  [c.210]

Упрочнение жаропрочных аустенитных сталей осуществляется в результате дисперсионного твердения. Для этого они подвергаются термической обработке, состоящей из закалки на аустенит и последующего длительного старения при 700—750° С.  [c.210]

Однако если первые три стадии процесса приводят к упрочнению сплава (так называемому дисперсионному твердению), то четвертая стадия (коагуляция дисперсных частиц) связана со снижением твердости (рис. 13.13).  [c.213]

Рис. 13.13. Дисперсионное изменение твердости стареющих сплавов Рис. 13.13. Дисперсионное изменение твердости стареющих сплавов
Механические свойства аустенитных дисперсионно-твердеющих жаропрочных сталей (ГОСТ 5632—61)  [c.213]

Упрочнение жаропрочных сплавов на основе N1 является результатом дисперсионного твердения после термической обработки (закалки для получения однородного твердого раствора легирующих элементов в N1 и последующего длительного старения при высоких температурах 700—800° С) (рис. 13.14).  [c.215]

На рис. 16.15 представлена диаграмма состояния системы Си—Ве. Это дисперсионно-твердеющий сплав с растворимостью Ве в Си при обычной температуре до 0,2%. После закалки с 800° С получают пересыщенный а-раствор.  [c.301]

Капли, пузырьки, твердые частицы в дисперсной смеси называют дисперсными частицами или дисперсной фазой, а окружающую несущую фазу — дисперсионной фазой.  [c.9]

Дисперсными будем считать гетерогенные системы, состоящие из псевдосплошной дисперсионной среды (компонентов, фаз) и дискретной дисперсной среды (компонентов, фаз), отделенных друг от друга развитой поверхностью раздела. Компоненты—химически индивидуальные вещества, а фазы — однородные части системы, находящиеся в различном агрегатном состоянии. Подчеркнем, что дисперсионная среда — псевдо-сплошная вследствие макроразрывов ее непрерывности дисперсными частицами, а дисперсная среда — макро-дискретная (dis retus — разделенный, прерывистый).  [c.9]

Для дисперсных систем неприменим и молекулярнокинетический подход. Трудно представить, что твердые частицы в общем случае подчиняются функциям распределения молекул жидкости. Возможно, такая аналогия могла бы быть формально успешной для квазигомоген-ных суспензий, но для гетерогенных систем со сравнительно инерционными частицами она явно не применима. Поэтому более правомерно изучение дисперсной и дисперсионной сред каждой в отдельности как сплошных (феноменологический подход), а всего потока в целом--как гетерогенной системы с макродискретностью, требующей введения специфических функций распределения.  [c.27]


В ламинарных течениях частицы могут выступать как своеобразные дискретные турбулизаторы. Последнее проявляется в определенной дестабилизации, нарушении устойчивости ламинарного течения взвешенными частицами. Это приводит к раннему качественному изменению режима движения. При этом турбулентный режим наступает при числе Рейнольдса зачастую в несколько раз меньшем [Л. 40], чем Некр для чистого потока. Ю. А. Буевич и В. М. Сафрай, объясняя подобный дестабилизирующий эффект в основном межкомпонентным скольжением, т. е. наличием относительной скорости частиц, указывают на существование критического значения отношения полного потока дисперсионной среды к потоку диспергированного компонента, зависящего и от других характеристик, при превышении которого наступает неустойчивость течения. Подобная критическая величина может быть достигнута при весьма малых числах Рейнольдса. Отметим, что критерий проточности Кп (гл. 1) может также достичь высоких (включая и характерных) значений при низких Re за счет увеличения концентрации, соотношения плотностей компонентов и др. Согласно (Л. 40] нарушению устойчивости способствует увеличение размеров частиц и отношения плотностей компонентов системы. Отсюда важный вывод о возможности ранней турбулизации практически всех потоков газовзвеси и об отсутствии этого эффекта для гидро-взвесей с мелкими частицами или с рт/р 1 (равноплотные суспензии).  [c.109]

Естественно, упрочнение сплава вследствие дисперсионного твердения повышает прочность в то же время перестарива-ние сплава, т. е. его разупрочнение вследствие коагуляции избыточной фазы снижает жаропрочность.  [c.461]

Конечно, цель такой термической обработки — повышение жаропрочности аустенитные стали второй группы обладают жаропрочностью более высокой, чем гомогенные аустенитные стали, что объясняется тонким распределением второй фазы, однако это является преимуществом только при кратковременных сроках службы при длительных сроках службы (t>100 ч) избыточная упрочняющая фаза скоагулирует, и тогда гомогенные сплавы превосходят по жаропрочности дисперсионно твердеющие.  [c.471]

Сравнение данных, приведенных в табл. 84 и 85, показывает, что аусте-нито-мартенситные дисперсионно твердеющие стали обладают существенно более высокими свойствами, чем чисто аустенитиые стали, и применение их предпочтительней, разумеется, если нет дополнительных требований в отношении магнитных свойств.  [c.495]

Итак, получение высококоэрцптнвпого состоянии сводится к разделению исходной р-фазы на когерентные высокодиснерсные Pi- и pj-фазы, что приводит к возникновению больших напряжений и к искажению кристаллических решеток фаз, к дроблению блоков мозаичной структуры. Для наибо лее успешного проведения этого процесса необходим ступенчатый распад р-фазы. Б. Г, Лившиц указывает, что существует два температурных интервала этого ступенчатого распада. В верхнем интервале (900—800°С) происходит подготовительный процесс, а в нижнем (700—600°С) с достаточной полнотой заканчццается процесс дисперсионного распада.  [c.545]

Старение охватывае,т все процессы, происходящие в пересыщенном твердом растворе, — процессы, подготавливающие выделение, и непосредственно процессы выделения. Превращение, при котором происходят только процессы выделения, называется дисперсионным твердением (без сложных подгото- птрльпых процессов, о которых речь идет дальше).  [c.569]

Особый интерес представляет бериллиевая бронза (БрБ2 с 2% Be). Сплав с 2% Be, как видно из диаграммы (рис. 451), дисперсионно твердеющий. Растворимость бериллия в меди ири комнатной температуре не превышает 0,2%, но закалка с 800°С фиксирует пересыщенный раствор а. Если закаленный сплав подвергнуть затем искусственному старению при 300— 350°С, твердость повысится до НВ 350—400.  [c.616]

Задача определения связи между определяющими показателями работы автобуса и искомой величиной — линейным расходом топлива Qs — решается методами многофакторного регрессионнокорреляционного и дисперсионного анализа. В основу решения заложены экспериментальные данные, полученные в результате испытаний автобусов на марштутах ряда автобусных парков I. Москвы.  [c.98]

Область уфазы выклинивается при 6,5% W. При содержании от 6 до 32% W сплавы способны к дисперсионному твердению.  [c.157]

Ж фопрочные сплавы на основе N1 подразделяются на гомогенные (нихромы и инконели) и дисперсионно-твердеющие (нимоннки). Гомогенные сплавы являются сплавами N1 и Сг, или N1, Сг и Ре с минимальным содержанием С и других элементов,  [c.220]


Смотреть страницы где упоминается термин АСУ ТОД 228, 229 — Дисперсионный : [c.286]    [c.288]    [c.10]    [c.11]    [c.120]    [c.394]    [c.394]    [c.461]    [c.463]    [c.470]    [c.471]    [c.544]    [c.109]    [c.302]    [c.307]    [c.354]    [c.159]    [c.220]   
Станочные автоматические линии Том 1 (1984) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте