Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость прямоугольных пластин при сдвиге

В данном случае, когда цилиндрическая оболочка теряет устойчивость без удлинений и сдвигов срединной поверхности, критическая нагрузка зависит только от изгибной жесткости оболочки, и структура формулы (6.50) для критического окружного напряжения не отличается от структуры формулы для критического напряжения]равномерно сжатой в одном направлении прямоугольной пластины со свободными краями. Полученный результат можно использовать и для цилиндрической оболочки со свободными торцами она тоже может потерять устойчивость без удлинений и сдвигов срединной поверхности.  [c.250]


Условия (2.2) впервые были предложены и использовались И. Г. Бубновым (1872—1919). В рецензии на монографию С. П. Тимошенко Об устойчивости упругих систем И. Г. Бубнов [6.3] (1913) нашел критическую силу сжатого консольного стержня, а также критическую нагрузку свободно опертой прямоугольной пластины при неравномерном продольном сжатии. Год спустя в курсе строительной механики корабля И. Г. Бубнов ([6.2], стр. 527) (1914) применил этот метод в задаче устойчивости пластины при эксцентричном сжатии и чистом сдвиге. Позднее Б. Г. Галеркин [6.7] (1917) применил метод Бубнова (в его работе имеется ссылка (стр. 897) на курс И. Г. Бубнова по строительной механике корабля [6.2]) к исследованию устойчивости и вычислению прогибов стержней и пластин для различных граничных условий. Интерпретация метода Бубнова с позиций принципа возможных перемещений была дана  [c.79]

Устойчивости прямоугольных изотропных пластинок, ослабленных вырезами, при действии сдвигающей нагрузки, посвящены публикации Р. В. Кондратьева и И. Н. Преображенского [55—57]. В них изложены результаты аналитического решения на основе обобщенных функций задачи об общей устойчивости перфорированной пластинки, нагруженной равномерно распределенным усилием сдвига. Основываясь на энергетических соображениях применительно к задаче об общей потере устойчивости, авторы использовали следующие допущения неоднородность докритического напряженного состояния для некоторых случаев существенно не сказывается на величине критического усилия сдвига, напряжения в пластине не превосходят предела пропорциональности. Использованный при исследовании метод был изложен ранее в работе [4].  [c.297]

Следует добавить, что дифференциальные уравнения, описывающие процессы изгиба и выпучивания длинной прямоугольной пластинки по цилиндрической поверхности, образующая которой параллельна длинной стороне пластинки, лишь значениями некоторых коэффициентов (см. ниже) отличаются от соответствующих уравнений изгиба и устойчивости слоистых балок и стержней. Точно также уравнения, описывающие процессы изгиба и выпучивания длинной панели по цилиндрической поверхности, аналогичны соответствующим уравнениям изгиба и устойчивости арки. Так возникают пары близких между собой систем дифференциальных уравнений, характеризующих механическое поведение существенно различных элементов конструкций. Ясно, что методы исследования краевых задач для этих близких систем уравнений одинаковы, а результаты, полученные при решении одной из них, сохраняют свое значение и для другой. Поэтому сформулированные ниже выводы о характере и степени влияния поперечных сдвигов, обжатия нормали, вида краевых условий на характеристики напряженно-деформированного состояния и критические параметры устойчивости слоистых длинных пластин и панелей остаются справедливыми для балок, стержней и арок.  [c.94]


В частном случае проанализирована устойчивость при сдвиге бесконечной изотропной полосы, шарнирно опертой по длинным сторонам прямоугольной ортотропной пластины, шарнирно опертой по всему контуру. Приводятся  [c.297]

Аштон и Ваддоупс [17 ] решили методом Релея — Ритца задачу устойчивости прямоугольной пластины с произвольной схемой расположения слоев при одноосном и двухосном сжатии, а также сдвиге в плоскости пластины. Полученные ими решения достаточно хорошо совпали с результатами эксперимента при одноосном сжатии пластин, защемленных по всем сторонам, пластин, защемленных по двум сторонам и шарнирно опертых по двум другим сторонам [15 [, сдвиге пластин, защемленных по всем сторонам [16], а также при одноосном сжатии пластин с линейно изменяющейся толщиной.  [c.184]

Несколько большее число работ посвящено динамике прямоугольных ортотропных пластин при больших прогибах. По-види-мому, впервые задачи такого рода применительно к однослойным (или симметричным) шарнирно опертым пластинам были рассмотрены в работах Амбарцумяна и Гнуни [8], Хассерта и Новинского [68]. В первой работе, посвященной динамической устойчивости, применялась процедура Ритца — Галеркина и учитывался сдвиг по толщине (см. раздел VI), а во второй — получено решение в рядах для прямоугольной пластины с закрепленными кромками. Позднее Ву и Винсон [193 ] получили существенно более простое решение этой задачи, используя гипотезы Бергера [26]. Круглые и треугольные пластины из ортотропного в прямоугольных координатах материала рассматривались в работах Новинского [103 ] и Новинского и Измаила [104].  [c.190]

На рис. 5.8, а изображена тонкая пластина, скрепленная по контуру с жесткой шарнирной рамкой. До потери утойчи-вости такая пластина будет находиться в состоянии чистого сдвига. После потери устойчивости (см. 23) на ее поверхности образуются наклонные волны. При этом пластина не теряет несущей способности и продолжает воспринимать возрастающую внешнюю нагрузку. Аналогично ведет себя закрепленная по контуру прямоугольная пластина при сжатии (рис. 5.8, б) после потери устойчивости она продолжает воспринимать возрастающую внешнюю нагрузку.  [c.215]

Рассмотрим решение задачи об устойчивости тонкой свободно опертой прямоугольной многослойной пластины несимметричной структуры при двухосном равномерном сжатии. Для тонких пластин, которые не содержат слоев с низкой трансвер-сальыой сдвиговой жесткостью, учет деформаций поперечного сдвига не дает существенных уточнений. Поэтому при расчете можно сразу положить я1)1 = ф2 = 0. В этом случае в формулировке задачи (4.71) будут участвовать следующие обобщенные перемещения  [c.208]


Балки, пластины и оболочки (1982) -- [ c.271 ]



ПОИСК



Пластина Устойчивость

Пластина прямоугольная

Сдвиг пластины

Устойчивость прямоугольных пластин



© 2025 Mash-xxl.info Реклама на сайте