Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование потоков рабочего тела

В параграфе 2 настоящей главы описана схема устройства, для моделирования потоков рабочего тела в турбинной ступени, которая сознательно упрощена, так как речь шла об изложении методики моделирования, а не о решении конкретной задачи, когда, вообще говоря, нельзя делать принятые допущения.  [c.222]

Моделирование потоков рабочего тела с учетом изменения удельного объема  [c.227]

В программах узлового метода анализа предпринята попытка одновременного моделирования энергии и потоков рабочего тела для достижения более точного воспроизведения цикла двигателя и его рабочих характеристик. Это было достигнуто путем составления и решения уравнений законов сохранения массы, количества движения и энергии для отдельных узловых точек, секций или элементов двигателя. Для общего аналитического решения эти уравнения достаточно сложны, поэтому их решали, используя численные методы в небольших временных промежутках. При дополнительных упрощениях, вводимых каждым автором по своему усмотрению, эти уравнения неизменно приводили к одномерному виду.  [c.50]


В зависимости от поставленной задачи и требований моделирования в качестве рабочего тела для экспериментальных установок выбирается пар или увлажненный воздух. Из этих же условий устанавливаются начальные и конечные параметры двухфазного потока в экспериментальных стендах.  [c.164]

В данной главе рассматривается метод электрического моделирования потоков пара в турбинной ступени. При этом нелинейности системы моделируются с помощью нелинейных электрических сопротивлений с управляемыми характеристиками, которые дают возможность учесть сложные зависимости коэффициентов расхода различных щелей и отверстий от скорости рабочего тела в них или от перепада энтальпий.  [c.215]

В ХПИ построена упрощенная модель для моделирования расходов рабочего тела в турбинах ХТГЗ им. С. М. Кирова, на которой производилось исследование распределения потоков пара в цилиндре высокого давления турбины К-300-240, состоящем из 11 ступеней. Блок-схема модели показана на рис. 108. В нее, кроме нелинейных элементов, компенсационных сопротивлений и источников Е для моделирования изменения реакции по высоте лопатки и насосно-эжекционного эффекта, входят линейные резисторы в цепях, моделирующих потоки в щелевых зазорах. Эти резисторы поставлены вместо нелинейных элементов, так как напряжения в рассматриваемых цепях, согласно предварительным расчетам, не выходят за пределы начальных (линейных) участков характеристик рассмотренных выше диодов. Следовательно, их применение в этих условиях теряет смысл. Модель же с применением линейных резисторов значительно упрощается.  [c.230]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]


Поставим задачу выяснения условий точного кинематического подобия течения в проточной части натурной и модельной ступеней при работе на различных рабочих телах. Будем считать, что геометрическое подобие соблюдено полностью и что можно пренебречь влиянием показателя изоэнтропы k на значения коэффициентов скорости ср и i 3. В соответствии с вышеизложенным полагаем, что критерии подобия Рг и ц/Н можно исключить из рассмотрения как маловлияющие, а течение в первом приближении — автомодельным по отношению к числу Re. Кроме того, примем, что углы выхода потока из сопловой и рабочей решеток сохраняются неизменными у натуры и модели. Возникающие при этом отклонения в значениях чисел Маха для натуры и модели и оценку его влияния на перенос данных ввиду сложности теоретического анализа необходимо рассматривать применительно к конкретным случаям моделирования радиально-осевых центростремительных ступеней.  [c.109]

Исследованные на стенде ЭРТ-1 ступени являются моделями ДРОС, предлагаемых ЛПИ в качестве разделителей потока для двухпоточных ЦНД мощных паровых турбин. Модели спроектированы и изготовлены с масштабом моделирования 6,25, обусловленным производительностью воздуходувной станции лаборатории турбиностроения. При моделировании учитывалась разница физических свойств рабочего тела натуры и модели. Для натурной ступени использовался перегретый пар k = 1,3), для модельной — холодный воздух (k = 1,4). Поскольку соблюсти одновременно кинематическое и динамическое подобие достаточно сложно, при моделировании полностью соблюдено кинематическое подобие процесса в натуре и модели, а также максимально возможно сохранено геометрическое подобие. При этом числа Маха М(,1, Ми,. получаются как средние между их значениями, соответствующими М = idem и kW = idem. В области дозвуковых скоростей при Мд1 = 0,857 такой выбор числа М модели наиболее полно отвечает динамическому подобию процессов [53].  [c.121]

Из соотношения (3.10) можно понять, что необходимость обеспечения высокого коэффициента эффективности теплопередачи может вступить- в конфликт с требованиями к величинам других характеристик рабочего тела. Чтобы найти наилучший компромисс между этими факторами, необходимо провести на ЭВМ численное моделирование работы всей системы при ис-пользованиии различных рабочих тел для нескольких вариантов двигателя. Это очень долгий и сложный процесс, являющийся к тому же весьма дорогостоящим мероприятием при проектировании, и поэтому при начальных оценках и проработках конструкции его, конечно же, не стоит применять. Эмпирических формул типа соотношений Била или Мальмё, которые помогали бы при выборе рабочего тела, не существует, по-видимому, вследствие недостатка в экспериментальных данных, что не позволяет получить более или менее разумных корреляционных зависимостей. Однако предложенный Уокером [10] простой подход, основанный на результатах оригинального исследования установившегося течения Холла [И], позволяет приближенно дать частичный ответ на поставленный вопрос. Применяя аналогию Рейнольдса, связывающую тепловой поток и сопротивление трения во внутренних течениях, можно выразить сравнительный тепловой поток при использовании конкретного рабочего тела для системы с заданным отношением сопротивления к тепловому потоку и заданным диапазоном температур соотношением  [c.310]


Электрическое моделирование нелинейных задач технической теплофизики (1977) -- [ c.217 ]



ПОИСК



Моделирование потока

Моделирование потоков рабочего тела с учетом изменения удельного объема

Рабочее тело



© 2025 Mash-xxl.info Реклама на сайте