Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Граничные условия для уравнения переноса вихря и уравнения для функции тока

Значительная часть книги посвящена численному интегрированию уравнений движения несжимаемой вязкой жидкости в нестационарном случае. В силу того что эти уравнения имеют высокий порядок и в силу сложности граничных условий применяется итерационный алгоритм, основанный на последовательном интегрировании двух связанных подсистем уравнений второго порядка— для переноса вихря и для функции тока. Разные типы этих подсистем уравнений (соответственно  [c.8]


Граничные условия для уравнения переноса вихря и уравнения для функции тока  [c.213]

Для выявления нелинейной неустойчивости можно обойти решение уравнения Пуассона для функции тока с помощью линеаризации уравнения переноса вихря. Граничные условия могут замораживаться . В уравнениях, описывающих течение сжимаемой жидкости, любая из четырех зависимых переменных может выключаться или рассчитываться независимо, однако здесь надо обращать внимание на неявную зависимость их расчета через уравнение состояния и через переход от консервативных к неконсервативным переменным. Пробный расчет задачи с = 0 часто выявляет ошибки, связанные с переходом от консервативных переменных к неконсервативным, однако этот способ неприменим в схемах типа схемы Лакса (разд. 5.5.4).  [c.480]

Значительная часть книги посвящена численному интегрированию уравнений движения несжимаемой вязкой жидкости в нестационарном случае. В силу того что эти уравнения имеют высокий порядок и в силу сложности граничных условий применяется итерационный алгоритм, основанный на последовательном интегрировании двух связанных подсистем уравнений второго порядка — для переноса вихря и для функции тока. Разные типы этих подсистем уравнений (соответственно параболический и эллиптический) позволяют изложить разнообразные численные схемы, которые широко используются при решении и других задач вычислительной гидродинамики.  [c.5]

Если не требуется находить нестационарное решение для давления, то в (т ), )-системе приходится решать одно уравнение переноса вихря параболического типа и одно уравнение для функции тока эллиптического типа V ф = с условиями Дирихле на некоторых (возможно, на всех) границах. (Стационарное решение эллиптического уравнения для давления находится только на последнем слое по времени, и поэтому выбор метода решения этого уравнения не имеет особого значения.) В (и, у, Р)-системе надо решать два уравнения переноса количества движения, имеющих параболический тип, и одно уравнение эллиптического типа для давления V P = 8р с граничными условиями Неймана на всех границах. При решении уравнения переноса вихря необходимо дополнительно выполнить две операции дифференцирования функции тока 1 ) для нахождения составляющих скорости, но уравнения переноса количества движения усложняются из-за членов с дивергенцией О/, / (в методе МАС эти члены значительно сложнее) и из-за специальных приемов, которые здесь требуются для обеспечения сохранения массы (объема). Решать уравнение переноса вихря можно по неявным схемам, хотя при этом может потребоваться дополнительный итерационный процесс для неявного вычисления значений на стенках ири условии прилипания. В случае же (и, у, Р)-системы значения и у"+ известны точно в течение всего времени, но здесь существует трудность, связанная с неустойчивостью из-за нелинейности (см. разд. 3.7.2). Достижение итерационной сходимости при решении уравнения У Р = 8р эллиптического типа требует значительно больше времени.  [c.306]


Я считаю важным приобщать студентов к работе на ЭВМ как можно раньше. Соответственно в процессе преподавания я не придерживаюсь строго последовательности изложения материала в настоящем учебном пособии. В книге последовательно описываются схемы для решения уравнения переноса вихря, затем схемы решения эллиптического уравнения для функциитока, затем методы постановки граничных условий и, наконец, вопросы, связанные с начальными условиями и критериями сходимости вопросы, связанные с обработкой полученной информации, обсуждаются в последней главе. Однако в учебном курсе я даю задачу о течении жидкости в замкнутой прямоугольной области с одной подвижной границей сразу же после изложения нескольких основных схем и непродолжительного численного экспериментирования с одномерным модельным уравнением конвекции и диффузии вихря и лекции, в которой излагаются простейшие схемы решения эллиптического уравнения для функции тока и граничные условия на стенках с прилипанием. Студенты в течение нескольких недель работают над этой двумерной задачей, в то время как я продолжаю чтение лекций уже в соответствии с изложением материала в настоящей книге.  [c.11]


Смотреть страницы где упоминается термин Граничные условия для уравнения переноса вихря и уравнения для функции тока : [c.306]   
Смотреть главы в:

Вычислительная гидродинамика  -> Граничные условия для уравнения переноса вихря и уравнения для функции тока



ПОИСК



Вихрь

Вихрь в функция тока

Вихрь перенос

Вихрь уравнение

Граничные уравнения

Граничные условия

Граничные условия для функции

Граничные условия для функции тока

Переноса уравнение граничные условия

Переноса уравнение уравнение переноса

Переносье

Ток переноса

Уравнение для функции тока

Уравнение переноса вихрей

Уравнения для функции

Уравнения и граничные условия

Условия в для функции Эри

Функция граничная

Функция тока



© 2025 Mash-xxl.info Реклама на сайте