Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Использование теплоты солнечной энергии

ГЛАВА 16. ИСПОЛЬЗОВАНИЕ ТЕПЛОТЫ СОЛНЕЧНОЙ ЭНЕРГИИ  [c.175]

Глава 16. Использование теплоты солнечной энергии  [c.176]

Высокая капиталоемкость ЭК, его сильные межотраслевые связи, заметная роль в трудовом балансе страны предопределяют существенное воздействие направлений развития комплекса на производственную сферу и народное хозяйство в целом, даже в тех случаях, когда удовлетворяется одна и та же потребность в конечной энергии и энергоносителях, но рассматриваются разные варианты производства первичных энергоресурсов, размещения топливных баз, уровня централизации генерирования электроэнергии и теплоты, темпов внедрения новых энергетических технологий. Существенное влияние вариантов развития ЭК на межотраслевой баланс и баланс капиталовложений, а через них — на развитие экономики, впервые исследованное в СЭИ СО АН СССР [15, 16], сейчас широко признается. В частности, Я. Б. Кваша отмечает, что массовое использование таких энергетических источников, как ядерная и солнечная энергия, синтетическое жидкое топливо и водород, существенно изменит отраслевую структуру промышленности и всего общественного производства [17].  [c.30]


В гл. 6 рассматриваются более подробно вопросы использования солнечной энергии для получения теплоты. В данной главе остановимся только на системах, предназначенных для преобразования солнечной энергии в электрическую. Начнем поэтому с рассмотрения тех характеристик, которые являются наиболее важными при этих процессах, прежде всего— спектр солнечного излучения. На рис. 5.6 показано, как распределена по длинам волн энергия солнечного излучения, падающего в единицу времени на единицу поверхности и приходящегося на единичный интервал длин волн. Спектр, измеренный на верхней границе земной атмосферы, очень хорошо совпадает со спектром излучения абсолютно черного тела при температуре 6000 К. Абсолютно черным телом называется физическое тело, которое излучает энергию во всем спектре и поглощает все падающее на него излучение независимо от длин волн. Таких тел в природе не существует, но существуют тела с очень близкими свойствами. Понятие абсолютно черного тела играет важную роль в физике. Так, решая задачу о распределении излучения абсолютно черного тела по длинам волн, Макс Планк впервые сформулировал принципы квантовой механики. В распределении солнечного излучения по длинам волн, измеренном вблизи поверхности Земли, имеются большие провалы, обусловленные поглощением излучения на отдельных частотах или в отдельных интервалах частот атмосферными газами — кислородом, озоном, двуокисью углерода — и парами воды.  [c.95]

В гл. 5 рассмотрена физическая сущность прямого преобразования солнечного излучения в электроэнергию. Широкое использование в быту полученной таким образом электроэнергии — дело отдаленного будущего. В ближайшей перспективе солнечную энергию можно использовать как источник теплоты. На протяжении многих лет солнечная теплота используется в ограниченных масштабах для отопления, опреснения воды и прочих целей. Неминуемый значительный рост цен на топливо в ближайшем будущем одновременно с усиливающимся беспокойством общественности по поводу окружающей среды могут привести к тому, что исследования в области солнечной теплоэнергетики займут, наконец, достойное место среди приоритетных направлений.  [c.139]

На рис. 6.31 представлены функциональные связи между элементами системы и пояснен принцип отопления и охлаждения помещений за счет солнечной энергии. Эта система отличается от стандартных систем важной конструктивной особенностью — в ней предусмотрены солнечный коллектор и аккумулятор теплоты. Необходим также вспомогательный источник теплоснабжения для покрытия пиковой части графика нагрузки теплосети. Использование солнечных отопительных устано-  [c.151]


Технические проблемы ТЭП. Основное направление использования ТЭП — источники энергии для космической техники [35]. Однако не исключаются и другие специальные применения ТЭП. При этом ТЭП могут быть встроены в ядер-ные реакторы (реакторы Топаз и Топаз-2 ), где источником теплоты служит реакция деления ядер урана, или использоваться в сочетании с высокоточными концентраторами солнечной энергии.  [c.524]

Кроме большого объема работ по строительству новых и реконструкции существующих тепловых и гидроэлектростанций, в СССР ведутся большие работы по созданию электростанций, где получение электроэнергии основано на использовании теплоты, выделяющейся в атомном реакторе, а также проводятся исследования по использованию и применению других видов энергии (солнечной энергии, энергии гра, энергии морских приливов и отливов и т. п.).  [c.6]

В популярной форме описаны принципы преобразования солнечной энергии в теплоту, электричество и другие формы энергии. Описан принцип действия и устройства солнечных установок, предназначенных для использования на приусадебных участках, в быту и сельском хозяйстве. Приведены практические рекомендации по расчету, выбору материалов, конструированию, изготовлению и монтажу солнечных установок своими силами.  [c.2]

Можно дать следующие рекомендации относительно схемного решения комбинированных солнечно-топливных установок горячего водоснабжения. Во-первых, необходимо обеспечивать улавливание максимально возможного количества солнечной энергии, что достигается снижением среднего уровня температуры теплоносителя в коллекторе и использованием эффективного коллектора. Во-вторых, следует исходить из того, что солнечная энергия должна использоваться для предварительного подогрева теплоносителя, в то время как дополнительный источник энергии (топливо или электроэнергия) — для доведения теплоносителя до требуемой температуры. При таком подходе обеспечивается максимальная экономия топлива благодаря наиболее эффективному использованию солнечной энергии. В-третьих, необходимо избегать смешения сред с различными уровнями температуры в аккумуляторе теплоты, в частности, с этой точки зрения не рекомендуется размещать электронагреватель в нижней части бака-аккумулятора или осуществлять подвод теплоты от дублера непосредственно в бак-аккумулятор гелиоустановки. Как минимум, верхняя часть бака, где размещается дублер, должна быть отделена перфорированной перегородкой от нижней, в которую подводится теплота от солнечного коллектора. Оптимальным решением является использование двух баков — одного с низкой температурой теплоносителя, обеспечиваемой солнечным нагревом, а второго с высокой температурой, обеспечиваемой дублером.  [c.62]

Наряду с получением теплоты эти системы также обеспечивают эффективное использование дневного освещения, благодаря чему снижается потребление электроэнергии. Однако площадь остекления южного фасада должна быть значительной, чтобы обеспечить требуемую долю солнечной энергии в покрытии тепловой нагрузки, а теплоаккумулирующие элементы (тепловая масса) должны быть размещены в наиболее благоприятных местах, чтобы на них попадали солнечные лучи большую часть дня. Следует избегать излишнего перегрева тех зон здания, где постоянно находятся люди, а также попадания в них прямых солнечных лучей, солнечных зайчиков и бликов. Вместо остекления вертикальных стен или наряду с ним может быть использовано остекление элементов крыши и чердачных помещений, сообщающихся с жилыми помещениями. При этом облегчается задача размещения теплоаккумулирующих элементов, меньше возникает солнечных зайчиков и уменьшается затенение тепловой массы предметами интерьера и экстерьера.  [c.68]

В этих системах используются окна и остекленные поверхности большой площади в проемах стен на южной стороне дома. Площадь остекления определяется тепловой нагрузкой отопления и площадью отапливаемых помещений. Для уменьшения тепловой нагрузки здание должно быть построено с применением улучшенной тепловой изоляции и использованием других мероприятий по сохранению энергии. Этой цели служит также использование тепловой изоляции светопрозрачных наружных поверхностей в ночное время, для чего могут использоваться теплоизоляционные щиты, ставни, плотные шторы и т. п. В доме, показанном на рис. 33, предусмотрено прямое улавливание солнечной энергии, а также имеется контур естественной конвективной циркуляции воздуха, нагретого в коллекторе, с аккумулированием теплоты в слое гальки и регулированием движения воздуха с помощью клапана, а также солнцезащитное устройство.  [c.69]


В туннельных теплицах могут использоваться плоские коллекторы солнечной энергии и грунтовые аккумуляторы теплоты с пластмассовыми трубами, проложенными в грунте для циркуляции нагретого или холодного воздуха. В одном из вариантов может быть предусмотрена система впрыска нагретой воды в теплицу, благодаря чему обеспечивается требуемый температурно-влажностный режим. По сравнению с неотапливаемой теплицей при использовании гелиосистемы температура воздуха на 3—8°С выше. Аккумулирование теплоты может осуществляться непосредственно в самой теплице в грунте или в цилиндрических капсулах с плавящимся веществом типа парафина.  [c.108]

Совершенно очевидно, что при применении теплового аккумулятора в качестве источника теплоты возможно использование различных видов энергии энергии деления ядер в атомном реакторе и радиоактивного распада различных веществ энергии солнечной радиации и от сгорания любых видов ископаемых топлив, электроэнергии и т. д.  [c.139]

Использование в промежуточном контуре нагрева тепловых труб с Ыа или с эвтектикой (КаК) позволяет отделить источники тепловой энергии от двигателя. Это особенно перспективно для двигателей, работающих от солнечной энергии, или двигателей, использующих теплоту сжигания городских, сельскохозяйственных или промышленных отходов. Непрямой способ нагрева хорошо сочетается с применением тепловых аккумуляторов в двигателях Стирлинга, предназначенных для наземного транспорта и подводных энергетических установок.  [c.106]

В дополнение ко всем этим преимуществам использование косвенного способа нагрева в системах преобразования солнечной энергии позволяет получить дополнительные возможности для энергоснабжения и в ночное время суток. Так, в состав контура может быть введена теплоаккумулирующая подсистема на основе фторида лития (тепловая батарея) с подзарядкой ее теплотой в период максимальной солнечной интенсивности. Это позволяет осуществить круглосуточную (или на любой требуемый срок) эксплуатацию системы двигатель—генератор. Другой возможностью при использовании косвенного нагрева (с тепловым аккумулятором или без него) является применение недорогостоящего дополнительного источника теплоты для поддержания работоспособности системы двигатель— генератор, независимо от того, светит солнце или нет. Иными словами, камера сгорания с кипящим слоем может быть единственным дополнительным оборудованием, необходимым для поддержания работоспособности крупной гелиоустановки с концентратором, двигателем Стирлинга и генератором в ночное время суток. В камере сгорания может сжигаться макулатура, использованные покрышки автомобилей, уголь или древесные отходы. Стоимость вспомогательного оборудования применительно к существующим или будущим гелиоустановкам ожидается минимальной.  [c.367]

Существуют два основных источника получения теплоты для приведения в действие тепловых двигателей — сжигание горючих веществ и деление ядер некоторых веществ. Кроме того, сюда можно отнести и солнечное излучение (табл. 6.1). Будут рассмотрены методы подсчета количества энергии, высвобождающейся в ходе простых химических реакций. Результаты этих исследований помогут выявить наиболее подходящий источник получения теплоты для каждого" конкретного случая ее использования. Однако необходимо помнить, что решения в области энергетики принимаются обычно на основе чисто экономических, а не технических соображений.  [c.112]

Наиболее подходящим направлением пре- образования солнечной энергин в полезную работу является ее использование для замещения органического топлива при получении теплоты в парогенераторе. Однако, как и при применении органического топлива, КПД преобразования ограничивается диапазоном температуры рабочего тела, в данном случае — пара. Поскольку создание и эксплуатация очень крупных коллекторных систем для концентрации солнечных лучей является делом сложным, в настоящее время в таких системах удается получить пар, как правило, с относительно небольшой температурой. Как следствие, КПД преобразования солнечной энергии в электроэнергию в таких установках может составлять около 10%. Чтобы получить I ГВт электрической мощности, потребовалось бы 10 ГВт мощности солнечного излучения.  [c.34]

При.чечание. Количество солнечной энергии, приходящейся на 1 м" в 1 с, составляет 11№ Дж (м с). Необходима пло-щ дь коллекторов 3 10 (КПД 0,1). при условии, что солнечная теплота аккумулируется днем для использования в ночное время.  [c.112]

Рост потребления электроэнергии на кондиционирование воздуха привел к тому, что пик годовой нагрузки энергосистем с зимы, как это было еще несколько лет назад, переместился на лето. Этот вид дополнительной нагрузки особенно тяжело сказывается на работе энергосистемы в грозовые душные летние ночи, когда потребность в кондиционировании резко возрастает. Вплоть до конца 70-х годов электроснабжающие компании весьма интенсивно рекламировали кондиционирование воздуха, но очень скоро обнаружилось, что справиться с резко возросшей в результате этого нагрузкой не представляется возможным, и поэтому они прекратили рекламирование кондиционеров. Многие жители, обеспокоенные сложившейся ситуацией, выступают за возврат к тому времени, когда комфортные условия в домах создавались без помощи кондиционирова- ния воздуха. И действительно, если бы дома лучше строились, лучше выбирались бы места их расположения и предусматривались бы встроенные в них устройства пассивного использования солнечной энергии, то энергетические потребности на кондиционирование воздуха в масштабах всей страны, по крайней ме- ре в жилом секторе, существенно уменьшились бы. Нагрузку на энергосистемы можно было бы также сократить, если бы в общественных зданиях удалось исключить распространенную практику переохлаждения воздуха с помощью кондиционирования и затем подогрев его с помощью электронагревателей до комфортной температуры. В некоторых административных зданиях в зимний период применяется одновременное отопление помещений, расположенных по периметру здания, и кондиционирование воздуха в помещениях в центральной час-, ти здания, где располагаются лифты, печатномножительные машины, компьютеры и т. п. Достойным сожаления является тот факт, что при таком нерациональном использовании энергии требуются меньшие затраты, чем при устройстве теплообмена в целях перераспределения теплоты, выделяемой при работе машин и механизмов в здании, для обогрева помещений, в которых работают люди. И, наконец, с сожалением отметим, что многие современные административные здания строятся  [c.264]


Кажущаяся простота получения тепла при концентрации солнечных лучей не однажды порождала неоправданный оптимизм. Сто лет назад, в 1882 году, русский журнал Техник опубликовал заметку об использовании солнечной энергии в паровом двигателе Инсолатором назван паровой двигатель, котел которого нагревается при помощи солнечных лучей, собираемых для этой цели особо устроенным отражательным зеркалом. Английский ученый Джон Тиндаль применил подобные конические зеркала очень большого диаметра при исследовании теплоты лунных лучей. Французский профессор А. Б. Мушо воспользовался идеей Тиндаля, применив ее к солнечным лучам, и получил жар, достаточный для образования пара. Изобретение, усовершенствованное инженером Пифом, было доведено им до такой степени совершенства, что вопрос о пользовании солнечной теплотой может считаться окончательно решенным в положительном смысле .  [c.177]

Практическое использование солнечной энергии получило распространение для выработки низкопотенциальной теплоты. Областью применения солнечных установок такого типа могут быть отопление и горячее водоснабжение жилых и общественных построек (одноквартирные дома, жилые блоки, пансионаты и базы отдыха, животноводческие фермы), а также технологические процессы, использующие низкопотенциальную теплоту.  [c.104]

В сфере сельскохозяйственного производства применение недорогих воздушных коллекторов солнечной энергии поможет решить проблему отопления животноводческих ферм. Также ц.елесообразно интенсифицировать работы по использованию солнечной энергии для отопления теплиц. Подогрев воды на фермах позволит улучшить условия труда и содержания животных. Солнечные установки отопления требуют значительных капиталовложений, которые обычно не окупаются за предполагаемый срок службы установок в 20 лет в районах, лежащих севернее 45° с. ш. Однако даже в холодном климате скандинавских стран — Швеции и Финляндии — реализованы крупномасштабные демонстрационные проекты солнечных систем теплоснабжения с применением тепловых насосов и сезонных аккумуляторов теплоты, позволяющих покрывать практически всю нагрузку отопления за счет солнечной энергии. Особенностью этих систем является аккумулирование теплоты солнечной радиации, поступающей в летний период, в больших подземных резервуарах или шахтных выработках и использование этой теплоты, а также энергии окружающей среды (грунта, грунтовых вод и т.п.) для отопления зданий в зимний период. Эти системы пока экономически нерентабельны, так как требуют больших капиталовложений. В перспективе, по мере роста цен на топливо и снижения стоимости гелиосистем и их элементов, особенно сезонного аккумулятора теплоты, появится возможность создания централизованных систем солнечного теплоснабжения с незначительным потреблением электрической и тепловой энергии.  [c.4]

Тепловой насос — это как бы холодильная установка наоборот. Он состит из тех же элементов, что и холодильная установка, только работает в другом температурном режиме и предназначен для отопления зданий за счет использования теплоты окружающей среды (воздуха, воды, грунта, солнечной энергии) и тепловых отходов. Тепловой насос может использоваться для отопления зданий зимой и их охлаждения летом. Существуют парокомпрессионные и абсорбционные тепловые насосы. Аналогично холодильной установке парокомпрессионный тепловой насос включает испаритель, компрессор, кон-, денсатор и дроссельный вентиль. Цикл работы теплового насоса осуществляется в диапазоне температур рабочего тела в испарителе и конденсаторе. Баланс энергии парокомпрессионного теплового насоса записывается в виде уравнения 9к=9и+/к, где — количество теплоты, отводимой в конденсаторе, кДж/кг — количество теплоты, подводимой в испарителе, кДж/кг /к — работа сжатия хладагента в компрессоре. Эффективность установки в случае, когда тепловой насос используется для отопления здания, характеризуется тепловым (отопительным) коэффициентом или коэффициентом преобразования энергии ф = 9к//к.  [c.24]

Экспериментальный дом фирмы Филипс (ФРГ, г. Аахен, 50,5" с. ш.) жилой площадью 116 м и объемом 290 м (рис. 37, а) оборудован эффективной системой для использования солнечной энергии, теплоты грунта и утилизации теплоты сточных вод и удаляемого вентиляционного воздуха. Поставленная при проектировании цель снижения теплопотерь здания была достигнута путем применения улучшенной теплоизоляции стен, двойного остекления окон с отражательным для инфракрасного  [c.79]

Благодаря более эффективному использованию теплоты (в частности, для предварительного подогрева опресняемой воды за счет теплоты конденсации водяных паров) в многоступенчатых солнечных опреснительных установках ее расход значительно ниже теоретического (670 кВт-ч на 1 м ) и составляет всего 50— 60 кВт-ч/м , а в системах с применением обратного осмоса и электродиализа и того меньше — 5—15 кВт-ч/м В установках последних типов потребление энергии пропорционально солесодержанию воды, и при дистилляции загрязненной маломинерализованной воды расход энергии составляет 1 кВт-ч/м .  [c.121]

Относительная площадь солнцеулавливающих поверхностей в различных климатических зонах может составлять 10—100 % площади отапливаемых помещений. При этом за счет использования солнечной энергии обеспечивается определенная доля / (от 10 до 80 %) тепловой нагрузки отопления и соответственно уменьшается расход теплоты от топливного источника. В случае же использования подвижной тепловой изоляции, закрывающей в ночное время лучепрозрачные поверхности, теплопотери здания значительно снижаются и эффективность гелиосистемы возрастает в 1,5—2,5 раза. При расчете пассивных гелиосистем необходимо определить площадь светопрозрачных поверхностей наружных ограждений здания, используемых для улавливания солнечной энергии, и массу теплоаккумулирующих элементов пола, стен, потолка. Как правило, эти элементы выполняются из бетона, но для аккумулирования теплоты могут также использоваться емкости, заполненные водой. При этом удельные масса и объем теплоаккумулирующих элементов, отнесенные к 1 м2 площади остекленных поверхностей, ориентированных на юг, определяются в зависимости от доли f %) солнечной энергии в покрытии тепловой нагрузки отопления как так=С1 иак=Соб/. Значения коэффициентов определяются видом теплоаккумулирующего элемента. Так, для емкости с водой С=3 кг/(% -м ) и Соб = =0,003-мз/(%-м2), для бетонной или каменной стены (пола) — соответственно 15 и 0,0075.  [c.134]

Приведены основные сведения по расчету теплового режима помещений, выбору, конструированию и расчету систем отопления зданий и сооружений. Изложена методика использования теплоты геотермальных вод и солнечной энергии. Изд. 3-е вьппло в 1975 г. под назв. Отопление, водопровод и канализация .  [c.2]

Значительные преимущества имеет комбинированная гелиотеплонасосная система теплоснабжения с последовательной (рис. 16.6, а) и параллельной (рис. 16.6,6) схемами подключения теплового насоса. В первом случае испаритель теплового насоса получает теплоту от аккумулятора, а во втором источником теплоты служит окружающая среда. Возможно также использование теплового насоса с двумя испарителями (рис. 16.7). При совмещении испарителя теплового насоса и неостекленного КСЭ с ограждающей конструкцией здания получается энергетическая крыша или энергетический фасад , которые позволяют использовать солнечную энергию, явную и скрытую теплоту окружающей среды.  [c.178]


Солнечные установки для отопления и горячего водоснабжения зданий входят в состав комбинированных гелиотопливных систем теплоснабжения, при этом за счет солнечной энергии обеспечивается частичное покрытие годовой тепловой нагрузки потребителя. Резервный источник теплоты должен обеспечивать полное покрытие расчетной тепловой нагрузки. В отдельных случаях допустимо неполное резервирование производительности гелиоустановки. Здание должно отвечать современным требованиям теплозащиты и сохранения энергии, а все элементы и оборудование гелиотопливной системы должны быть спроектированы особо тщательно. При соблюдении этих условий может быть обеспечена высокая эффективность использования солнечной энергии.  [c.178]

Принципиальная схема. Повышение КПД использования солнечной энергии в теплице предполагает уменьшение отражения от почвы, предотврашение выхода длинноволнового излучения из теплицы за ее прёделы, утилизацию энергии испарения и конвективного потока теплоты, накопление и использование тепловой энергии в почве или в других теплоемких средах. Использование аккумулирующей массы в виде воды, булыжника, грунта позволяет перенести начало отопительного сезона в южных районах с середины октября на конец ноября и завершить его во второй половине апреля. С помощью солнечной энергии осуществляют подогрев воды для полива растений и обеззараживание почвы в летнее время. Схема гелиотеплицы представлена на рисунке.  [c.58]

Использование солнечной энергии в СССР развивается в направлении создания солнечных электростанций, фотоэлектрических преобразователей и систем солнечного теплоснабжения. Наиболее осво еиньгм направлением является выработка низкопотенциальной теплоты для использования в целях горячего водоснабжения и отопления обще-  [c.217]

В работе Голдуотера и Морроу [147] описаны схема и начальные стадии работы над двигателем. Блок энергоустановки имеет свободнопоршневой двигатель Била вытеснительного типа с линейным генератором переменного тока. Для нагрева рабочего тела был использован ядерный источник энергии. Для обеспечения точной динамической балансировки системы предложена схема с оппозитными поршнями, предназначенная для полетного образца. Следует отметить, что интенсивность солнечного излучения убывает пропорционально квадрату расстояния от Солнца. В связи с этим космическому летательному аппарату, находящемуся на периферии солнечной системы, будет затруднительно получать достаточное количество солнечной энергии по мере его удаления от Солнца. В любом случае потребуется мощность около нескольких ватт для поддержания радиоконтакта с Землей и проведения необходимых исследований. 13 случае необходимости большей мощности единственным выходом будет снабжение космического летательного аппарата энергией при ее передаче лазерным лучом. При этом энергия, передаваемая коллимированным лучом оптического диапазона, должна быть в дальнейшем абсорбирована и превращена в теплоту для последующего использования в двигателе Стирлинга. Как известно, лазерное устройство позволяет обеспечить большую концентрацию световой энергии в когерентном пучке или луче.  [c.349]

Турбоэнергетические системы. Использование солнечной радиации находит применение и в традиционной двухступенчатой схеме преобразования энергии тепловая— -механическая— -электрическая. В частности, NASA разрабатывает солнечные турбоэлектрические генераторы, известные под названием Санфлауэр (подсолнечник) [169]. Одной из наиболее сложных проблем является создание системы охлаждения. Применение покрытий позволяет поддерживать оптимальные температурные параметры цикла, уменьшать площадь и массу радиатора. На рис. 8-24 представлена схема солнечной энергетической системы с турбогенератором [170]. Теплота, полученная от выхлопных газов, и скрытая теплота конденсации излучаются с поверхности радиатора. Коэффициент полезного действия установки зависит от температуры котла, которая ограничивается жаропрочностью материалов, и от температуры радиатора. Без 204  [c.204]


Смотреть страницы где упоминается термин Использование теплоты солнечной энергии : [c.79]    [c.144]    [c.36]    [c.37]    [c.69]    [c.77]    [c.82]    [c.103]    [c.206]   
Смотреть главы в:

Внутренние санитарно-технические устройства Часть 1 Издание 4  -> Использование теплоты солнечной энергии



ПОИСК



Использование солнечной энергии

Использование энергии

Энергия солнечная



© 2025 Mash-xxl.info Реклама на сайте