Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дефектные электронные соединения

Дефектные электронные соединения  [c.173]

Люминесценция согласно С. И. Вавилову — это избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью, примерно 10" сек и больше. Различают фотолюминесценцию, осуществляемую за счет возбуждения излучением оптических частот, к а т о д о л ю-м и н е с ц е и ц и ю, возникающую за счет энергии падающих заряженных частиц (электронов) и другие виды. Различают также свечение дискретных центров (одни и те же частицы поглощают н излучают световую энергию) и рекомбинационное свечение, когда процессы излучения и процессы поглощения пространственно разделены. Для люминесцентного излучения используют вещества, способные к преобразованию получаемой энергии (например, электронов) в энергию света без существенного повышения температуры. Для этой цели могут служить многие неорганические соединения, в особенности так называемые кристаллофосфоры, или люминофоры,— сложные кристаллические вещества, содержащие примеси — активаторы. Атомы активаторов, попадая в кристаллическую решетку, искажают ее, поэтому люминофоры имеют дефектную структуру. Изменяя состав и концентрацию активаторов, получают различные характеристики люминофора.  [c.198]


Методами Э. были определены мн. атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, нитридов переходных металлов (Fe. Сг, Ni. W), обширного класса оксидов Nb. V, Та с локализацией атомов N и О, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. исследуют и структуру дефектных кристаллов. В комплексе с электронной микроскопией Э. позволяет изучать фазовый состав и степень совершенства структуры тонких кристаллич. плёнок, используемых в разл. областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок.  [c.585]

В нестехиометрических соединениях, например в карбидах титана, циркония, гафния, избыток коллективизированных электронов появляется за счет дефектности этих карбидов по углероду,, т. е. при наличии избыточных атомов металла, поставляющих в полосу проводимости свои валентные электроны.  [c.90]

Остановимся на причине изменения концентрации носителей тока с температурой. Концентрация носителей не может расти за счет ионизации каких-либо примесных уровней, поскольку при концентрациях порядка 10 —10 2 см энергии ионизации обычно равны нулю. Изменение концентрации в карбидах переходных металлов можно объяснить, исходя из сложной зонной структуры этих соединений. Зона проводимости состоит из двух перекрывающихся зон 5-зоны и -зоны. Если уровень Ферми находится в области, где плотность состояний с -зоны падает с ростом энергии, то с повышением температуры происходит перераспределение электронов между зонами таким образом, что число их в 5-зоне растет. Когда уровень Ферми находится в области роста плотности состояний -зоны, то наблюдается обратная картина. В [5] показано, что кривая зависимости плотности состояний от энергии в гибридной 2р + Зо -зоне Т1С действительно имеет минимум, причем уровень Ферми стехиометрического Т1С находится на участке падения плотности состояний. С ростом энергии плотность состояний сначала падает, а потом начинает расти. В соответствии с этим и наблюдается изменение концентрации носителей тока. Эффект падения концентрации сильнее у более дефектных карбидов, поскольку у них вследствие роста концентрации зона заполняется до больших энергий [4].  [c.43]


Однако механизм влияния легирующих компонентов на характер изменения дефектности ионной проводимости пассивных пленок на титане остается еще не вполне ясным. Во всяком случае, объяснение полученных экспериментальных результатов не укладывается в простое их толкование на основании теории индукции валентности Вервея, Вагнера, Хауффе [110]. По этой теории входящие в пленку с электронным типо.м проводимости ионы Сг + должны были бы увеличивать ионный ток, а ионы N5 + снижать его, т. е. влиять обратно тому, что было установлено в экспериментах. Принятие для ТЮг дырочного типа проводимости, как это было сделано в работе [Ш], устранило бы это несоответствие, однако такое допущение маловероятно кроме того, в этом случае осталось бы необъяснимым наблюдаемое различие в изменении ионной проводимости ТЮз от присадок некоторых элементов с одинаковой валентностью, например, 5п + и 2г + или АР+ и Сг +. Следует отметить, что и при газовом окислении сплавов титана применимость идеализированной теории Вагнера — Хауффе о дефектности оксидных соединений, образующих окалину, оказалась очень ограниченной. Как известно, из многих двойных систем титана в отношении газового окисления проведение только двух из них (Т1 — и Т1 — Та) достаточно хорошо объясняется с помощью этой теории [111].  [c.46]

Выше уже было отмечено, что существование электронных соединений связано с определенным отношением числа валентных электронов к числу атомов, т. е. с электронной концентрацией. Строго говоря, это неправильно, и, согласно электронной теории металлов, при анализе необходимо учитывать число электронов на элементарную ячейку кристаллической структуры, потому что энергия электронов в кристаллической решетке зависит от. их вза.имодействия с периодическим полем решетки и, следовательно, определяется элементарной ячейкой. В электронных соединениях с решеткой, у которой все узлы заняты атомами, число электронов на атом связано простым соотношением с числом электронов на элементарную ячейку, и это дает возможность внести простую эмпирическую поправку в пра вило электронной концентрации. Однако имеется много примеров электронных соединений с дефектной кристаллической структурой (т. е. с такой кристаллической решеткой, не все узлы которой заняты атомам.и), и в таких случаях необходимо контролировать число электронов на элементарную ячейку.  [c.173]

Тепловые и голографические методы контроля редко применяются для сварных конструкций и соединений. В основном область их применения — электронная промышленность, авиация, космическая техника (выявление не-пропаянных контактов проводников и дефектных узлов, нагревающихся при эксплуатации, сотовые панели самолетов, клеевые соединения и т. д.). Основное их преимущество — бесконтактность с объектом контроля. Недостаток— сложность методик и оборудования. С совершенствованием последних данные методы могут найти широкое применение в промышленности.  [c.220]

В случае несобственной ионной проводимости Q—энергия иона, необходимая для перескока. Аналогичное выражение определяет несобственную электронную проводимость. Если электронная проводимость обусловлена переходом электронов в зону проводимости, то можно применить элементарную зонную теорию полупроводников, при этом Q /2, где Е — ширина запрещенной зоны. Собственная ионная проводимость требует не только образования, но и перемещения ионов собственной проводимости. Поэтому для двойного соединения Q = Q,72 -f-+ QnePe K. где Qi — энергия, необходимая для образования дефектной пары.  [c.452]

Тугоплавкие соединения переходных металлов являются перспективными катализаторами. Каталитическая активность этих материалов во многом определяется дефектностью в подрешетке элементов внедрения. С увеличением дефектности наряду с ростом электронной плотности в сфере атома металла, усиливается взаимодействие металл—металл за счет электронов, высвобождающихся при разрьше связи металл-неметалл. Кроме того,наблюдается повьпиение металлического характера связи и вследствие того, что расстояние между атомами металла  [c.196]


В карбидах, нитридах и окислах с дефицитом по углероду (например, в Tii x) избыточные электроны проводимости также образуют дополнительные металлические связи между атомами в металлической подрешетке, но вследствие еще более низкой концентрации электронов в дефектных соединениях металлические связи еще слабее.  [c.93]

Видя слабости позиций механической теории, исследователи выдвинули гипотезу о специфическом взаимодействии клеевого слоя и склеиваемого материала, охватывающем физические, термодинамические и химические процессы. Это взаимодействие объясняли с помощью различных теорий адгезии. В литературе [5, S. 21 14, с. 14 44 45 46, с. 7 47 48] описаны следующие из них адсорбционная (молекулярная), электрическая (электронная, электростатическая), химическая, диффузионная, термодинамическая, микрореологическая, электрорелаксационная, электромагнитная. Многочисленность, на первый взгляд, теорий связана с двойственностью понимания адгезии и в некоторых случаях с субъективными факторами (например, с нежеланием вовремя признать абсурдность взглядов). Указанная двойственность обусловлена тем, что, с одной стороны, адгезию рассматривают как процесс формирования соединения двух поверхностей, который, конечно же, может иметь свой механизм, с другой — ее представляют как итог этого процесса — связь поверхностей, которая также может характеризоваться своим механизмом. Сложность изучения адгезии состоит в том, что на практике не происходит так называемого адгезионного разрушения — разрушения по первоначальной границе контакта партнеров. Объем взаимодействующих фаз на много больше, чем объем границы контакта, а следовательно, и их дефектность превышает дефектность в зоне соприкасающихся поверхностей. Разрушение клеевых соединений происходит по одному из слабых слоев, преимущественно пограничных [60], а потому нельзя точно сопоставить результаты испытания на прочность адгезионного соединения и данные расчетов, которые вытекают из той или иной гипотезы о причине связи поверхностей.  [c.448]

Магнитный контроль основан на намагничивании сварных или паяных соединений и обнаружении полей магнитного рассеивания на дефектных участках. Изделие намагничивают, замыкая им сердечник электромагнита или помещая его внутрь соленоида. В зависимости от способа обнаружения потоков рассеивания различают методы магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на поверхность соединения напосят порошок железной окалины или его масляную суспензию. Изделие слегка обстукивают для облегчения подвижности частиц порошка. По скоплению порошка обнаруживают дефекты, залегающие на глубине до 6 мм. При индукционном методе магнитный ноток в изделии наводят электромагнитом переменного тока. Рассеяние поля обнаруживают с помощью искателя, в катушке которого индуктируется э. д. с., вызывающая оптический или звуковой сигнал на индикаторе. При магнитографическом методе на шов накладывают и прижимают фе])ромагиитную ленту, на которой фиксируется магнитное изображение шва. Затем это изображение воспроизводится на экране электронно-лучевой трубки.  [c.368]

Кроме полупроводников, структура которых является производной от структуры алмаза и которые образуются путем заполнения дополнительных мест в этой решетке, существуют полупроводники с дефектными структурами на основе структур сфалерита и вюртцита. Это соединения четвертого типа. Они образуются при замене атомов А из II подгруппы на атомы из III подгруппы и изменении их числа с трех на два для сохранения общего числа электронов в молекуле. С точки зрения правила нормальной валентности и правила Музера-Пирсона такое изменение роли не играет — в обоих случаях rig = 24, Nb = 3, Nbb = 0. Однако число валентных электронов на атом становится больше 4 (24/5 = 4.8). Такая ситуация приводит к образованию дефектной тетраэдрической структу-  [c.80]


Смотреть страницы где упоминается термин Дефектные электронные соединения : [c.113]    [c.114]    [c.106]    [c.29]   
Смотреть главы в:

Введение в физическое металловедение  -> Дефектные электронные соединения



ПОИСК



Дефектность

Электронные соединения

Электронные соединения, См. соединения

Электронные соединения, См. соединения электронные



© 2025 Mash-xxl.info Реклама на сайте