Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волны в магнитоупорядоченных кристаллах

ВОЛНЫ в МАГНИТОУПОРЯДОЧЕННЫХ КРИСТАЛЛАХ  [c.368]

Глава 14. Волны в магнитоупорядоченных кристаллах............368  [c.403]

Общей, или классической, акустикой называют раздел физики, имеющий дело с упругими колебаниями и волнами в классической сплои ной среде в случае, когда длины волн значительно больше расстояний между атомами и молекулами. Другими словами, общая акустика — это часть механики сплошных сред (гидродинамики и теории упругости), изучающая колебательные и волновые процессы. Если же среда характеризуется не только механическими, но и другими физическими свойствами (например, наличием пьезоэлектричества, фотоупругости, магнитных свойств и т. д.), то процесс распространения звука в такой среде может существенно зависеть от этих свойств. Для описания акустических явлений в этом случае уже недостаточно традиционных представлений механики сплошных сред. Необходимо использовать более общие модели, основанные на рассмотрении соответствующих явлений на макро- и микроуровнях. Это относится к взаимодействиям звука с тепловыми упругими волнами в кристаллах — фононами, взаимодействиям со светом — фотонами (акустооптика), со свободными носителями заряда — электронами (акустоэлектроника), с возбуждениями в магнитоупорядоченных кристаллах — магнонами. Когда длина волны становится сравнимой с параметром решетки кристалла, возникают специфические явления, которые также не могут быть описаны в рамках классической механики сплошных сред.  [c.6]


В магнитоупорядоченных кристаллах (напр., ферромагнетиках, ферритах) наличие спина, орбитального момента и обменного взаимодействия приводит к тому, что, помимо рассмотренных выше проявлений взаимодействия Г. с веществом, появляется ряд других явлений, где играют роль магнитоупругие взаимодействия. Так, распространение гиперзвуковой волны вызывает появление спиновой волны, и, наоборот, спиновая волна вызывает появление гиперзвуковой волны. Т. о., один тип волн порождает другой, поэтому в общем случае в таких кристаллах распространяются не чисто спиновые и упругие волны, а связанные магнитоупругие волны. Изучение спин-фононных взаимодействий представляет существенный интерес для исследования спин-решёточной релаксации в магнитоупорядоченных кристаллах. В случае спиновых волн большой, или, как говорят, конечной, амплитуды, возникают нелинейные эффекты.  [c.89]

Существование спиновых волн (открыты Блохом в 1930 г.) в магнитоупорядоченных однодоменных кристаллах (обычно наличие доменов в таких кристаллах снимается внешним магнитным полем) обусловлено характерной для них сильной корреляцией между ориентациями спинов отдельных атомов, благодаря чему изменение ориентации спина в одной точке пространства распространяется в другие области в виде волн (рис. 14.2). С феноменологической  [c.371]

В настоящей главе мы кратко рассмотрим некоторые особенности распространения волн в магнитоупорядоченных кристаллах. Интерес к этой проблеме связан, во-первых, с тем, что изучение магнитных и упругих колебаний атомов в таких кристаллах представляет собой физическую основу многочисленных методов возбуждения звука магнитным полем. Во-вторых, некоторые свойства различных типов волн в магнитоупорядоченных кристаллах перспективны для использования в устройствах обработки сигналов. Хотя главное внимание ниже мы уделим квазиакустическим волнам, т. е. волнам, переносящим в основном механическую энергию, будут затронуты и основы теории спиновых волн. Ознакомление с особенностями этого специфического вида волнового движения в магнитоупорядоченных кристаллах необходимо для понимания свойств акустических колебаний.  [c.368]

Особенностью УЗ в высокочастотном и гиперзвуковом диапазонах является возможность применения к нему представлений и методов квантовой механики, поскольку длины волн и частоты в этих диапазонах становятся одного порядка с параметрами и частотами, характеризующими структуру вещества. Упругой волне данной частоты при этом сопоставляется квазичастица — фонон, или квант звуковой энергии. Квантово-механич. представления удобны при рассмотрении различных взаимодействий в твёрдых телах. Напр., рассеяние и поглощение звука колебаниями кристаллич. решётки можно рассматривать как взаимодействие когерентных и тепловых фононов, комбинационное рассеяние света (см. Манделъштама — Бриллюэна рассеяние) — как взаимодействие фотонов с фо-нонами, а взаимодействие с электронами проводимости в металлах и полупроводниках и со спинами и спиновыми волнами в магнитоупорядоченных кристаллах (см. Магнитоупругие волны) — соответственно как электрон-фо-нонное, спин-фононное и магнон-фононное взаимодействия.  [c.12]


Переменные ГЛЗ (с переменным значением г) н дисперсионные ГЛЗ (с т, зависящим от частоты) реализуются с применением магнитоупругих волн, возбуждаемых в магнитоупорядоченных кристаллах напр., в железоиттриевом гранате). Изменение задержки здесь достигается переносом областей возбуждения и приёма магнитоуиругих волн (т. е. переносом областей перехода спиновых волн в упругие на входе ГЛЗ и обратного перехода на её выходе), что достигается изменением напряжённостп внешнего постоянного магн. поля. Пределы изменения т в пере- ченных ГЛЗ составляют примерно 1 — 10 мкм, D — ок. 70 дБ на частотах до 3 ГГц, а Д/// обычно не превышает 0,05 0,1. В дисперсионных ГЛЗ на магнито-упругих волнах используется эффект дисперсии скорости волн при определённых значениях Н , В железо-иттриево.м гранате дисперсия составляет доли мкс в относит, полосе пропускания до 0,01.  [c.595]

Обсудим в заключение еще один пример — цепочку, состоящую из маленьких магнитных стрелок — осцилляторов с неупругой связью (рис. 4.11). Цепочка находится во внешнем магнитном поле, каждая стрелка может свободно вращаться в плоскости чертежа вокруг своего неподвижно закрепленного центра основные обозначения вынесены на рисунок. Будем предполагать, как мы и делали в большинстве случаев, что магнитное взаимодействие имеет место лишь между полюсами ближайших стрелок. Распространение волн в такой цепочке рассматривалось М.Пароди при изучении ферромагнитных кристаллов [2], а недавно вновь анализировалось в [4] в связи с исследованием магнитостатических волн в магнитоупорядоченных средах.  [c.69]

О сильной корреляции между направлениями атомных спинов в магнитоупорядоченных кристаллах. Причину такого поведе ния легко увидеть на примере следующего простого процесса. Рассмотрим ферромагнетик, находящийся в основном состоянии при 0 = 0°К. Тогда все атомные магнитные моменты направлены в одну сторону и энергия ферромагнетика минимизирована (рис. 1.7.1 (а)). Теперь отклоним магнитный момент одного атома и отпустим. Момент начнет прецессировать вокруг локального эффективного поля (рис. 1.7.1 (Ь)). Но из-за наличия обменных взаимодействий между соседними спинами изменение направления момента не останется локализованным в исходном атоме оно начнет распространяться сквозь кристалл в форме волнового движения (рис. 1.7.1 (с)), называемого спиновой волной. Имеются как продольные, так и поперечные спиновые волны (рис. 1.7.2). Видно, что спиновые волны могут рассматриваться как колебания плотности магнитного момента, распространяющиеся сквозь магнитно упорядоченный кристалл.  [c.50]

Магнитострикция и пьезомагнетизм — магнитные аналоги электрострикции и пьезоэлектричества. Первый эффект соответствует появлению деформации, не зависящей от знака приложенного магнитного поля (следовательно, это — квадратичный эффект по полю), второй — появлению в некоторых нецентросимметричных кристаллах намагниченности при их деформации.. Естественный пьезомагнетизм редко наблюдается для него необходимо редко встречающееся сочетание подходящих кристаллографической и магнитной симметрий. Магнитострикция, которую имеют многие ферромагнетики (например, никель, иттрий-железные гранаты), находит применение в магнитострикционных преобразователях. Магнитострикция является причиной многих интересных взаимодействий одним из них является влияние-внутренних деформаций вследствие структурных дефектов на кривую намагничивания ферромагнетика. Другое важное явление в магнитоупорядоченных кристаллах (ферромагнетиках,, ферримагнетиках), которое будет далее рассматриваться в гл. 6,. состоит в появлении связи между колебаниями в поле деформации кристалла и в спиновой системе. Этот эффект взаимодействия между упругими и спиновыми волнами называется магнон-фононным взаимодействием, так как на языке физики твердого тела фононы — это воображаемые частицы, связанные с акустическими или упругими волнами соотношением де Бройля волновой механики. Возможность такого взаимодействия следует из того, что, как показывается в квантовой статистической физике, как фононы, так и магноны подчиняются статистике Бозе — Эйнштейна. Вероятность встретить такое взаимодействие-увеличилась после открытия в 1956 г. нового типа ферромагнитных материалов — редкоземельных железных гранатов, среди. которых иттрий-железный гранат — наиболее хорошо известный представитель.  [c.55]


МАГНИТОУПРУГИЕ ВОЛЦЫ, волны, возникающие в магнитоупорядоченных кристаллах — ферромагнетиках и антиферромагнетиках — в результате магнитоупругого вз-ствия. Упругие колебания ионов в крист, решётке относительно положения равновесия в магнитоупорядоченных кристаллах сопровождаются колебаниями спинов, а следовательно, и магнитных моментов в свою очередь, колебания спинов, распространяясь по кристаллу в виде спиновых волн, вызывают смещение ионов. Поэтому в М. в. изменение намагниченности связано с изменением деформации и механич. напряжения. Магнитоупругое вз-ствие наиболее сильно проявляется в той области частот, где длина упругой волны оказывается величиной, близкой к длине спиновой волны. Дисперсионные соотношения, характеризующие зависимость частоты волны со от величины волн, вектора к 2л к, в простейшем случае имеют вид для спиновой волны о)сп= =7( +а/ссп), а для продольных и поперечных упругих волн а)уп=С А уп  [c.387]

Как и в случае немагнитных диэлектриков, вдоль границ магнитоупорядоченных кристаллов могут распространяться поверхностные магнитоупругие волны [13—161, в том числе волны рэлеевского типа [13, 14], чисто сдвиговые магнитоупругие волны [151, аналогичные волнам Гуляева — Блюштейна в пьезоэлектриках, и чисто сдвиговые волны, распространяющиеся вдоль границы между двумя кристаллами (161. В последнее время поверхностные магнитоупругие волны начинают использоваться в устройствах обработки сигналов.  [c.378]

В конденсиров. средах возможны разл. типы возбуждений и, следовательно, К. Колебания атомов (или ионов) около положения равновесия распространяются по кристаллу в виде волн (см. Колебания кристаллической решётки). Соответствующие К. наз. фононами. Единств, тип движения атомов в сверхтекучем гелии — звук, волны (волны колебаний плотности). Соответствующие К. наз. фононами и ротонами, все они — бозоны. Колебания магн. моментов атомов в магнитоупорядоченных средах представляют собой волны поворотов спинов (см. Спиновые волны). Соответствующая К.—магнон—также бозон. В полупроводниках К. являются эл-ны проводимости и дырки (обе — фермионы). Взаимодействуя друг с другом и с др. К., эл-ны и дырки могут образовывать более сложные К. экситон Ванье — Мотта, полярон, фазон, флуктуон).  [c.250]

СПЙНОВЫЕ ВОЛНЫ, 1) волны нарушений спинового порядка в магнитоупорядоченных средах. В ферромагнетиках, антиферромагнетиках и ферримагнетиках спины атомов и связанные с ними магн. моменты при отсутствии возбуждения строго упорядочены. Состояние возбуждения магн. системы связано с отклонением спина от положения равновесия. Из-за вз-ствия между атомами такое отклонение не локализовано, а в виде волны распространяется в среде. С. в. явл. элементарными (простейшими) возбуждениями системы магн. моментов в магнитоупорядоченных средах. Соответствующие квазичастицы наз. магнонами. Существование С. в. было предсказано амер. физиком Ф. Блохом в 1930. С. в., как всякая волна, характеризуется зависимостью частоты 0) от волнового вектора к дисперсии закон). В кристаллах с неск. магнитными подрешётками могут существовать неск. типов С. в. с разными законами дисперсии.  [c.714]

В прозрачных ферритах и антиферромагнетиках магнитооптич. методы применяют для изучения спектра спиновых волн, экситонов, примесных уровней энергии и пр. В отличие от диамагнетиков и парамагнетиков, во вз-ствии света с магнитоупорядоченными средами гл. роль играют не внеш. поля, а внутр. магн. поля этих сред (их напряжённости достигают 10 —10 Э), к-рые определяют спонтанную намагниченность (подрешёток или кристалла в целом) и её ориентацию в кристалле. Магнитоогггич.  [c.383]


Смотреть страницы где упоминается термин Волны в магнитоупорядоченных кристаллах : [c.17]    [c.203]    [c.373]    [c.810]   
Смотреть главы в:

Введение в физическую акустику  -> Волны в магнитоупорядоченных кристаллах



ПОИСК



Кристаллы магнитоупорядоченные



© 2025 Mash-xxl.info Реклама на сайте