Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вычислительная техника для решения инженерных задач

Начало работ по созданию систем автоматизированного проектирования относят к середине шестидесятых годов. Именно к этому времени был накоплен определенный опыт использования вычислительной техники для решения инженерных задач и получили необходимое развитие средства вычислительной техники. Появились электронно-вычислительные машины, обладающие высоким быстродействием и большими объемами основной И внешней памяти. Созданы устройства ввода и вывода графической информации — кодировщики и графопостроители, позволяющие кодировать чертежи для ввода их описания в ЭВМ и выводить из ЭВМ на бумажный носитель чертежи технических объектов.  [c.7]


ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА ДЛЯ РЕШЕНИЯ ИНЖЕНЕРНЫХ ЗАДАЧ  [c.13]

Современные задачи, возникающие перед наукой и техникой, вызывают необходимость проектирования все более сложных технических объектов в сжатые сроки. Удовлетворить противоречивые требования повышения сложности объектов, сокращения сроков и повышения качества проектирования с помощью простого увеличения численности проектировщиков нельзя, так как возможность параллельного проведения проектных работ ограничена и численность инженерно-технических работников в проектных организациях страны не может быть сколько-нибудь заметно увеличена. Выходом из этого положения является широкое применение вычислительной техники для решения проектных задач (автоматизация проектирования).  [c.3]

ГОСТИ И механика разрушения. В гл. 1 содержится обзор этих методов в контексте общих краевых задач, которые могут относиться к любой из названных областей или к ним всем. Остальные главы посвящены методам граничных элементов в механике твердого тела. В гл. 2 дается обзор сведений из теории упругости, которые затем постоянно используются в остальной части книги. В гл. 3 вводится решение Фламана для линии сосредоточенных сил, действующих на границе полуплоскости, и для этого случая разрабатывается простой метод граничных элементов. Цель состоит в том, чтобы показать, как математическое решение элементарной задачи может быть преобразовано в вычислительную технику для решения более сложных проблем. В гл. 4 и 5 построены два непрямых метода граничных элементов для плоских задач. Идея прямых методов (эта терминология разъясняется в гл. 1) развивается в гл. 6 с помощью скорее физических, чем математических соображений. В гл. 7 иллюстрируются некоторые обобщения методов граничных элементов и технические приемы, позволяющие увеличить точность решения. Некоторые из этих приемов общие, а другие специально созданы для определенных классов задач. Особое внимание уделяется тому, как для решения этих задач строятся вычислительные программы. И наконец, в гл. 8 даны примеры приложений методов граничных элементов в горной геомеханике и инженерной геологии. Эти примеры подобраны таким образом, чтобы проиллюстрировать ту помощь, которую оказывает метод граничных элементов, облегчая понимание физических процессов.  [c.8]

Аналоговые вычислительные машины (АВМ) с операционными усилителями постоянного тока нашли в настоящее время широкое применение для решения инженерных задач и в первую очередь для исследования динамических систем. Вопросы конструирования электронных моделей, технические и математические принципы их построения заняли довольно большое место в отечественной технической литературе. Широко представлена в ней и методика применения АВМ в различных областях техники. Имеются многочисленные примеры решения задач на АВМ обычными методами. В то же время практические вопросы применения АВМ освещены еще недостаточно. Первым опытом авторов в создании руководства, в котором отмечены тонкости применения АВМ, даны практические приемы использования операционных блоков и пути преодоления различных трудностей, возникающих в практике моделирования динамических систем, явилась книга 400 схем для АВМ , выпущенная издательством Энергия в 1978 г. Благожелательное отношение к ней стимулировало дальнейшую работу авторов в этом направлении, результатом которой является предлагаемое справочное пособие.  [c.3]


Математические методы и средства вычислительной техники являются важнейшими элементами современной методологии научных исследований, автоматизированного проектирования, инженерных расчетов. Современный уровень развития ЭВМ и сопровождающего их математического обеспечения позволяет инже-неру-теплоэнергетику организовать решение сложнейших задач и обработку больших объемов информации с использованием высокоэффективных численных методов и методов управления базами данных, не требуя от пользователя специальной математической или программистской подготовки. Тем не менее основные сведения об ЭВМ, их техническом и математическом обеспечении, об основных принципах и языках программирования, об общих и ориентированных на теплотехнику и теплоэнергетику пакетах прикладных программ и банках данных специалисту-теплоэнергетику крайне необходимы. Они включены в разд. 5 Вычислительная техника для инженерных расчетов . Здесь приведены характеристики новых ЭВМ, микропроцессоров и микропроцессорных систем, даны сведения о перспективных языках программирования (Ассемблер для микропроцессорных систем, Паскаль), об операционных системах ЕС ЭВМ и СМ ЭВМ. Рассмотрены некоторые типы теплотехнических задач и  [c.8]

Важно отметить, что прогресс в области АП требует усилий ученых и инженеров во многих сферах научно-технической деятельности, определяющих состояние и возможности различных средств автоматизации проектирования. Для проектирования новых сверхсложных объектов недостаточно только развивать средства вычислительной техники, необходимы новые подходы к математической формулировке задач и поиск методов их решения. Функционирование сложных программных систем не будет эффективным без удовлетворительного решения проблем информационного обеспечения. Не могут оставаться неизменными при развитии САПР организационные формы деятельности инженерных коллективов, формы документооборота, содержание подготовки инженерных кадров.  [c.107]

Наиболее активно и целеустремленно работа по внедрению карт организации трудовых процессов и в целом НОТ в исследуемый период проводилась на новосибирских заводах Сибсельмаш , Тяжстанкогидропресс им. А. И. Ефремова, им. В. П. Чкалова, инструментальном. На Сибсельмаше , например, в ведущих цехах были установлены специальные аппараты, позволяющие начальнику цеха иметь непосредственную одновременную связь с производственными участками и мастерами. Смонтированная на заводе электронно-вычислительная машина производит решение математических, инженерно-технических и технико-экономических задач для конструкторов, технологов, работников отдела труда и заработной платы и ряда цехов  [c.115]

Низкая надежность машин приводит к простоям, сокращению полезного фонда рабочего времени, росту затрат на единицу работы. Чем выше надежность ЭВМ, тем больше, при прочих равных условиях, их экономическая эффективность. Для увеличения эффективности ЭВМ необходимо возложить на них решение наиболее серьезных задач. Ориентация их использования только в управленческой деятельности конструкторских организаций (бухгалтерского учета, планирования, материально-технического снабжения и т п.) может не дать высоких результатов. Значительно шире нужно использовать электронную технику в творческом процессе конструирования изделий для решения сложных инженерно-экономических задач. Сдерживающим фактором роста эффективности является большой удельный вес подготовительно-заключительного времени. Время подготовки задач для решения на вычислительной машине во много раз больше машинного времени. В результате такое качество ЭВМ, как их быстродействие, не проявляется в полной мере в деле сокращения сроков конструирования объектов.  [c.17]

Полное решение задачи устойчивости автоколебательной системы с учетом характера начальных возмущений, постоянно действующих сил и вариаций параметров, возможных в системе, для производства инженерных расчетов весьма сложно. Поэтому ниже рассматривается приближенное решение этой задачи методом математического моделирования с применением современных средств вычислительной техники— аналоговых и цифровых вычислительных машин.  [c.338]


Развитие и применение современных математических методов и средств вычислительной техники позволяют решать задачи расчета сложных конструкций методом конечных элементов без разделения на части. Размерность решаемых при этом уравнений достигает многих десятков, а иногда и тысяч. Однако время подготовки данных, решения задачи и вывода на печать оказывается неприемлемо большим и не отвечает требованиям САПР. Результаты расчетов при этом труднообозримы, неудобны для прямого инженерного анализа и, самое главное, не приспособлены для параллельного анализа и диалогового проектирования специалистами различного профиля.  [c.166]

В инженерной практике в последнее время широкое распространение получили приближенные аналитические и особенно численные методы, которые с развитием вычислительной техники (цифровой и аналоговой) превратились в мощный математический аппарат для решения задач теории поля.  [c.3]

Суть метода состоит в сведении краевой задачи для дифференциальных уравнений к интегральному уравнению по границе области (или ее части). Он является одним из классических методов исследования и решения краевых задач. В связи с успехами электронно-вычислительной техники появились возможности построения эффективных численных и численно-аналитических методов решения интегральных уравнений. Это привело к интенсивному развитию метода граничных интегральных уравнений, который наряду с конечно-раз-ностными методами и методом конечных элементов успешно применяется в инженерной практике.  [c.5]

На рис. 1.2 указаны виды вычислительных устройств, применяемых для решения задач в инженерной практике. В настоящее время происходят коренные изменения габаритов, стоимости, универсальности и эффективности всех видов вычислительной техники.  [c.13]

Это, конечно, не исключает возможности распространения предлагаемых приемов на иные объекты. Автор считает полезным помеш,ение в книгу расчетного характера этого, по сути дела, описательного материала и для ознакомления с ним читателей, не имеющих специального технического образования, но по роду своей работы в вычислительных центрах занятых решением именно инженерных задач, так как трудно надеяться, чтобы эти сотрудники принялись бы за изучение этой области техники по классическим руководствам.  [c.11]

В настоящее время стало обычным решение с помощью ЭВМ или даже мини-ЭВМ нелинейных алгебраических задач, содержащих несколько тысяч уравнений. Кроме того, соответствующие численные методы и составление вычислительных программ становятся в наши дни составной частью преподаваемых курсов в большинстве инженерных школ. Специалисты-механики, столкнувшись со сложными задачами расчета структур, первыми использовали информационную технику для анализа моделей механических структур (этот факт относится к 1956 г.).  [c.7]

Одной из основных задач перестройки высшей школы является всесторонняя компьютеризация учебных дисциплин. Очевидно, что изучение вопросов автоматизации разработки и выполнения конструкторской документации (АКД) должно стать неотъемлемой частью учебного процесса, так как будуш,ему специалисту необходимо знать не только традиционные методы ее разработки за кульманом, но и уметь использовать средства вычислительной техники для этих целей. В предыдущих главах показано, что и как целесообразно автоматизировать, какие для этого необходимы и могут быть использованы программные и технические средства. В настоящей главе приведены материалы, которые могут стать полезными при практическом внедрении дисциплины, изучающей вопросы АКД, в учебный процесс. При этом следует исходить из того, что изучение вопросов АКД может быть начато в общеобразовательном курсе, например, в развитие дисциплины Инженерная графика и продолжено в других дисциплинах при подготовке специалистов по САПР и конструированию. При постановке дисциплины АКД ставится цель научить обучающихся использовать технические и программные средства машинной графики поставить задачи программистам, связанные с решением вопросов разработки АКД разрабатывать и использовать информационное и программное обеспечение подготовки и выпуска конструкторской документации.  [c.113]

Современный уровень науки и техники требует активного использования возможностей вычислительной техники. Актуальность овладения методами решения задач теории механизмов и машин диктуется динамичным развитием машиностроения и возрастанием его роли в развитии народного хозяйства в целом. Поэтому важным этапом подготовки будущих инженеров является приобретение навыков использования вычислительных машин при проведении лабораторных работ и курсового проектирования по ТММ. Возникающие в курсе ТММ задачи довольно часто настолько сложны, что их точное аналитическое решение или оказывается невозможным, или требует большого труда и времени для достижения нужных результатов. Применение вычислительных машин освобождает студентов от выполнения трудоемких расчетов, не требующих специальных знаний, сокращает затраты времени на определение кинематических характеристик графическими методами, значительно сокращает время достижен[1я конкретных практических результатов и позволяет глубже вникнуть в научную специфику решения инженерных задач машиноведения.  [c.7]

Развитие средств вычислительной техники стимулировало распространение инженерного анализа практически на все этапы проектирования как отдельных деталей, узлов и агрегатов, так и изделий в целом. Многообразие физических процессов в наукоемких изделиях, субъективность в постановке задач анализа, в подходах к идеализации протекающих процессов, в выборе методов решения и многие другие причины привели к созданию огромного числа специальных методик, алгоритмов и программ, предназначенных для решения задач анализа машиностроительных изделий. В этом разделе основное внимание уделяется вопросам организации сквозного процесса конструирования и анализа в концепции САЬ8-технологий и особенностям использования наиболее распространенных программ.  [c.53]


На рис. 44 приведена развернутая графическая информащюнная модель на разработку и функционирование технологической документации в условиях серийного производства, применяющего средства вычислительной техники для разработки документов, обработки содержащейся в них информации и автоматизированного решения целого комплекса инженерно-технических задач, связанных с ТПП и управлением производства.  [c.215]

Комплекс вопросов, связанных с вводом, преобразованием и выводом геометрической и графической информации, и возникающих в связи с использованием ЭВМ, называют машиннойграфикой, одна из основных проблем которой — математическое обеспечение (МО), ориентированное на решение задач начертательной геометрии. Создание такого МО необходимо для автоматизации процессов проектирования и чертежно-графических работ. Составление программ решения задач машинной графики требует специальных знаний, связанных с электронной вычислительной техникой и программированием. Однако алгоритмы решения этих задач нельзя создать без знания основ начертательной геометрии, В связи с этим машинная графика становится специальным разделом инженерной графики и начертательной геометрии.  [c.157]

В разд. 4 изложены основные сведения о математических методах, широко используемых в инженерной практике и, в частности, при создании новых математических моделей для решения задач теплоэнергетики и теплотехники. Дан необходимый справочный материал. В новой редакции учтены пожелания и замечания читателей, высказанные по предыдущим изданиям. Включен дополнительный материал по полиномиальным преобразованиям, расширены сведения, относящиеся к вероятностным методам. В то же время такие разделы математики, как стоксов формализм, обобщенные функции и некоторые другие, не нашедшие широкого применения в практике инженеров-теплотех-ников, сокращены. За счет этого существенно расширен и переработан параграф Численные методы . Поскольку численные методы вместе с теорией алгоритмов, языками программирования и операционными системами составляют ядро вычислительного эксперимента как новой научной методологии, редакторы серии сочли целесообразным отнести этот материал в следующий раздел, посвященный применению средств вычислительной техники в инженерной деятельности.  [c.8]

Второй метод, вследствие набора типографской формы из различных элементов, не позволяет выполнить точно заданные размеры, а это создает неблагоприятные условия для внесения в документы соответствующей информации (кодов на материалы, оборудования, технологическую оснастку и т. п.), которая из-за несоответствия размеров по ширине или высоте графы и по значности не вписывается в бланки документов. В результате нар)т1ается порядок записи информации в документах и усложняется обработка информации с применением средств вычислительной техники (появляются ошибки, которые отрицательно влияют на решение различных инженерно-технических задач).  [c.91]


Смотреть страницы где упоминается термин Вычислительная техника для решения инженерных задач : [c.10]    [c.158]    [c.317]    [c.59]    [c.75]    [c.119]   
Смотреть главы в:

Решение инженерных задач на ЭВМ  -> Вычислительная техника для решения инженерных задач



ПОИСК



Решение инженерной задачи

Техника вычислительная



© 2025 Mash-xxl.info Реклама на сайте