Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методика проведения периодических испытаний

МЕТОДИКА ПРОВЕДЕНИЯ ПЕРИОДИЧЕСКИХ ИСПЫТАНИЙ  [c.384]

Отдельные разработчики и исследователи кабельных изделий электрические свойства изоляции определяют при испытаниях с повышенным напряжением [101]. За стартовые значения испытательного напряжения и длительности его применения принимаются нормативы, установленные для сдаточных или периодических испытаний кабельного изделия, и испытания проводятся при подъеме напряжения по ступенчатой методике до электрического пробоя изоляции. При проведении сдаточных испытаний строительная длина кабеля на напряжение 3,3 кВ по нормативной документации, действующей до середины 2002 г., испытывалась в течение 5 мин. при напряжении iO (Зи ) кВ (где, и, - линейное напряжение) частоты 50 Гц.  [c.154]


Очень важно, чтобы в стандартах и технических условиях были бы полно отображены требования к проведению приемо-сдаточных и периодических испытаний, объемы выборок, а также методики и оборудование. Это создаст предпосылки для всесторонней оценки качества вьшускаемой продукции и явится гарантом высокого качества. При утверждении государственных стандартов, экспертизе отраслевых, а также технических условий Госстандарт СССР добивается, чтобы все эти требования были учтены.  [c.83]

Замеры твердости проводят либо иа одном образце (периодически вынимаемом из печи для замера твердости), либо на серии образцов, последовательно вынимаемых из печи, на каждом из которых проводится один замер. В обоих случаях методика проведения испытаний может оказать влияние на характер получаемой кривой, так как исходная структура для серии образцов, изготовленных даже из одного прутка, может отличаться друг от друга (особенно для аустенитных сталей, склонных к карбидной ликвации)-Разброс экспериментальных точек получается и благодаря неоднородности свойств по сечению шлифа и ошибкам, вносимым при замерах самим экспериментатором.  [c.133]

Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]


Методика исследовательских испытаний включает статические, расширенные точностные испытания, запись сигналов, поступающих от системы управления в целях более точного определения временных интервалов и согласованности работы рабочих органов, записи давлений на различных участках пневмо- или гидросистемы и усилий в звеньях для локализации дефектов, запись мощности электродвигателей или силы тока, частоты вращения вала двигателя, исследование виброакустических характеристик, измерения температуры и др. [4]. Эти исследования проводятся до испытаний на надежность и долговечность и периодически повторяются в ходе ресурсных испытаний, что дает возможность установить корреляционные связи между показателями динамического качества, наработкой на отказ и износом деталей механизма робота. В процессе эксплуатации эти связи исследуются при проведении испытаний до и после ремонтных работ, связанных с разборкой механизмов, когда имеется возможность изучить характер износа.  [c.224]

Одним из эффективных средств контроля без вскрытия цилиндров, необходимым для увеличения ресурса, является вибродиагностика развития трещин в роторах, осуществляемая в процессе работы турбоагрегата или на остановленной турбине. В последнем случае может быть достигнута большая чувствительность средств вибродиагностики, повышена достоверность результатов при периодическом проведении испытаний диагностируемого ротора с измерением как низшей, так и ряда высших его собственных частот и форм колебаний, определено положение и характерные геометрические параметры трещины с помощью рассчитанных на ЭВМ номограмм. Апробация этой методики осуществляется на эксплуатируемых роторах с искусственной трещиной.  [c.16]

Первичная и периодическая поверка средств измерений представляет собой незаменимый способ обеспечения единства измерений в случае, когда разнообразные средства измерений эксплуатируются для достижения какой-то одной четко ограниченной цели (например, для измерения массы), особенно, если оценка возможной степени достижения этой цели подтверждена государственными испытаниями средства измерений. Возможности поверки уменьшаются применительно к многоцелевым средствам измерений, используемым для аналитического контроля преимущественно на основе экспериментально установленных градуировочных характеристик. Это обстоятельство настолько важно, что на нем следует остановиться более подробно. Остановимся, например, на первичной и периодической поверке фотоэлектрических колориметров (ГОСТ 8.298—78). В соответствии с методикой, изложенной в этом стандарте, поверка должна включать внешний осмотр, опробование, определение нестабильности показаний, основной абсолютной погрешности и размаха показаний. Для проведения последних двух операций используют набор образцовых мер спектрального коэффициента пропускания, состоящий из семи светофильтров с коэффициентом пропускания от 5 до 92 %, которые аттестованы с погрешностью не более 0,5 %.  [c.25]

Для проведения приемочных испытаний (контроля) от каждой партии инструмента выбирается некоторое его количество, называемое выборкой. Контроль производят путем осмотра внешнего вида, замера размерно-геометрических параметров и испытания инструмента данной выборки на работоспособность. Под работоспособностью понимается сохранение инструментом режущих свойств после его испытаний. Режимы испытаний на работоспособность устанавливаются нормативно-технической документацией. После проведения испытаний инструмент не должен иметь заметных следов износа, выкрашиваний и должен быть пригодным к дальнейшему использованию. Кроме приемочных испытаний, инструмент подвергается периодическим испытаниям. При этих испытаниях сопоставляется средняя стойкость отдельных выборок от партий, изготовленных в различные периоды времени. Периодические испытания проводятся базовыми лабораториями или предприятиями в соответствии с отраслевыми методиками испытаний. Однако проведение периодических испытаний связано с расходом значительного количества металла и времени, поэтому в последние годы делаются попытки сократить время испытаний и расход материалов. Так, канд. техн. наук Р. А. Невельсоном и автором данной книги в работе [32] была изложена методика испытаний режущего инструмента при нормальных режимах резания, канд. техн. наук П. Г. Кацевым разработаны и проходят проверку методики испытаний при повышенных режимах резания. Использо-  [c.52]


Характер изменения нагрузок предопределяет методику проведения экспериментального исследования, анализа и моделиро.-вания процесса. В связи оо спецификой программных испытаний нестационарные процессы нагруженности подразделяют на периодические и случайные. К периодическим относят процессы, в которых величины параметров простых или сложных циклов нагружения повторяются с определенной закономерностью нестатического характера. В процессах случайного типа чередование циклов нагружения с различными значениями параметров подчиняется вероятностным законам.  [c.17]

Сравнительные технологические испытания проводились на примере сульфидной полиметаллической руды Лениногорского и флюоритовой руды Вознесенского месторождений. Подготовка проб к испытаниям проводилась по той же методике, как и для руд, обогащаемых гравитационными методами. Сульфидная руда крупностью 25-0 мм отобрана с транспортера питания мельниц Лениногорской обогатительной фабрики N 3. Часть руды согласно принципиальной схеме испытаний, представленной на рис.5.17, по механической схеме переработки дробилась в щековой дробилке ДЩ 150x80 до крупности - 3 мм, затем измельчалась в стержневой лабораторной мельнице периодического действия до крупности -250 мкм (соотношение Т Ж = 1 1.5 загрузка руды 1.5 кг, загрузка стержней 9 кг, время измельчения 21 мин.). Аналогичный помол руды принят на Лениногорской обогатительной фабрике для проведения процессов коллективной флотации  [c.218]

После аккредитации лаборатории становятся членами НАИО и выполняют ее правила, относящиеся к проведению испытаний они обязаны участвовать в периодически проводимых межлабораторных проверочных программах. Лица, которым разрешается подписывать отчеты об испытаниях, утверждаются НАИО с ними проводят беседы по выяснению прошлого опыта, социальной принадлежности, знания методик испытаний, правил составления отчетов, градуировки средств измерений и т.д.  [c.204]


Смотреть страницы где упоминается термин Методика проведения периодических испытаний : [c.264]    [c.158]    [c.328]   
Смотреть главы в:

Справочник по электрооборудованию автомобилей  -> Методика проведения периодических испытаний



ПОИСК



Испытания периодические

Методика испытаний

Проведение испытаний



© 2025 Mash-xxl.info Реклама на сайте