Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимость развития пограничного слоя от числа Рейнольдса

Зависимость развития пограничного слоя от числа Рейнольдса  [c.142]

Плазменный поток на выходе из сопла плазмотрона, не может сразу приобрести структуру, типичную для развитого турбулентного пограничного слоя, особенно когда течение в начальном сечении было ламинарным. В этом случае область перехода от течения газа в канале к струйному течению особенно велика, ярко светящееся ядро струи остается ламинарным [85] (рис. 85) и сохраняется на больших расстояниях вниз по течению [28]. Поскольку в ламинарной струе смешение носит значительно менее интенсивный характер, чем в турбулентной, то зона смешения также значительно уже, что, как было показано выше, приводит к более плавному спаду температуры и скорости вдоль оси струи. Этот спад может быть даже меньше, чем в случае турбулентных слабо-подогреваемых струй (см. рис. 87 и 88). Наличие участка ламинарного течения и зависимость его длины от числа Рейнольдса приводит к тому, что параметры струи, относящиеся к отдаленным сечениям, в зоне развитой турбулентности тоже становятся зависящими от Ре.  [c.157]


Кроме того, на величину Re p может влиять шероховатость поверхности пластины, интенсивность теплообмена и т. д. Сам переход от ламинарного к турбулентному режиму течения жидкости в пограничном слое, как показывают опытные данные, происходит не в точке, а на некотором участке, в связи с чем иногда вводят два значения Re,(pi и Re p2, где Re pi =-— критическое число Рейнольдса, отвечающее переходу от ламинарного к переходному режиму течения, когда в пограничном слое возникают первые вихри и пульсации Re pa = — критическое число Рейнольдса для перехода к развитому турбулентному режиму течения. На рис. 3-2 приведены зависимости Re pi и Re pn от степени начальной турбулентности набегающего потока.  [c.70]

В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]


Пользование величиной С/ вместо Xw имеет то преимущество, что зависимость f от физических параметров газа и от скорости потока менее заметна, чем такая же зависимость для напряжения трения Xw В общем случае для течений вдоль пластин, а также в трубах с небольшими изменениями давления на величину с/ влияют главным образом числа Рейнольдса и Маха, условия теплообмена и шероховатость стенок. Для ламинарного и развитого турбулентного пограничных слоев уменьщается с ростом чисел Ке и М. Для течений с продольным градиентом давления увеличивается при отрицательном градиенте давления и уменьшается в противном  [c.65]

Если, как это имеет место в большинстве случаев, поток, обтекающий тело, отрывается в некоторой точке, то спутная струя будет обладать свойствами вихреобразования. В зависимости от значения числа Рейнольдса течение будет турбулентным в большей или меньшей степени. Следовательно, многие турбулентные потоки можно рассматривать как обычные спутные струи, в которых объект, находившийся выше по течению, уже перемешал поток в известном смысле таким же образом, как это было описано. Турбулентность может быть вызвана и при,помощи другого, чем упомянутый выше механизм перемешивания (например, термической конвекцией), но для большинства потоков, имеющих важное значение в инженерных исследованиях ветровых воздействий, можно считать, что турбулентность вызвана механически. Так, например, деревья, здания или местность, расположенная выше по течению от заданной точки, играют важную роль в развитии турбулентности ветра, наблюдаемого в пограничном слое атмосферы над этой точкой. Описание турбулентности природных воздушных потоков приведено в разд. 2.3.  [c.103]

В зависимости от режима течения различают ламинарный и турбулентный пограничные слои. По мере развития пограничного слоя толщина его возрастает. Пока она мала, течение в пограничном слое будет ламинарным, лаже если внешний поток турбулентный. Режим течения в пограничном слое так же, как для потока в трубах и каналах, может характеризоваться величиной числа Рейнольдса, составленного по толщине б пограничного слоя, скорости щ внешнего потока и кинематическому коэффициенту вязкости v. С увеличением толщины б число Рейнольдса в некоторой точке может достигнуть критического значения. За этим сечением формируется турбулентный пограничный слой. Таким образом, в общем случае при безотрывном обтекании некоторой твердой поверхности потоко.м имеет место сочетание ламинарного и турбулентного пограничных слоев.  [c.74]

На фиг. 13 представлена зависимость локальных значений коэффициента трения от числа Рейнольдса, определенного по толщине потери импульса. При подобном представлении f получено довольно необычное соотношение в области полностбю развитого турбулентного пограничного слоя, не зависящее от места перехода. Точки при малых Re дают более высокие значения Су, чем можно было ожидать, однако при больших Re получены примерно такие же значения, как и в экспериментах других авторов с М = 6,7.  [c.411]

Видно, что эта зависимость является линейной прн некотором разбросе экснернментальных точек. Точка пересечения прямой Ue Q)IUi = f D) с осью абсцисс соответствует значению /)=1,45, прп котором происходит отрыв пограничного слоя. При изотермическом состоянии пограничного слоя величина >=1,45 является верхним пределом отрывного значения формпараметра D. Действительное значение D в точке отрыва зависит от числа Рейнольдса и условий развития потока вниз но течению. Принято считать надежным опытным значением /) = 1,3 0,1.  [c.427]

Классическим направлением магнитной гидродинамики в 1950-70-х гг. было исследование подавления турбулентности продольным магнитным полем. Теоретическое моделирование этого эффекта до сих пор до конца не изучено. Поэтому наиболее сложные - переходные (от ламинарного к турбулентному) режимы течения в первых теоретических и численных исследованиях, как правило, не рассмат-эивались. В работе Е. К. Холщевниковой ([26] и Глава 12.5), с привлечением уравнения для турбулентной вязкости, впервые осуществлено численное моделирование развитого течения в трубах в осевом магнитном поле во всем диапазоне чисел Рейнольдса (от ламинарного до турбулентного режимов). Была предложена нелинейная математическая модель развития возмущений в круглых трубах, которая, в зависимости от начальной интенсивности возмущений и от числа Рейнольдса, переводит течение либо в ламинарный, либо в турбулентный режим. Развитые в ЛАБОРАТОРИИ теоретические и численные методы анализа МГД пограничных слоев широко использовались в ИВТ АП СССР и в филиале Института атомной энергии [27.  [c.519]


Если проанализировать кривые (см., например, рис. 157) зависимости коэффициента сопротивления с ,. плохо обтекаемого тела (шара, кругового цилиндра, не слишком вытянутого эллипсоида) от рейнольдсова числа, то мол<но заметить, что в области сравнительно больших этих чисел (порядка 2,4 10 ) наблюдается резкое уменьшение коэффициента сопротивления. Такое явление получило наименование кризиса сопротивления . Было замечено, что соответствующее критическое число Рейнольдса Некр сильно зависит от турбулентных характеристик набегающего потока, от шероховатости поверхности тела, числа Маха в случае большой скорости потока и от многих других причин. Эти параметры, как мы уже знаем, играют определяющую роль в развитии переходных явлений в пограничном слое. Опыты главным образом над шарами и круглыми цилиндрами полностью подтвердили это предположение.  [c.681]


Смотреть страницы где упоминается термин Зависимость развития пограничного слоя от числа Рейнольдса : [c.364]    [c.248]    [c.66]   
Смотреть главы в:

Теория пограничного слоя  -> Зависимость развития пограничного слоя от числа Рейнольдса



ПОИСК



Рейнольдс

Число Рейнольдса

Число Рейнольдса си. Рейнольдса число



© 2025 Mash-xxl.info Реклама на сайте