Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Производство магния и титана

ПРОИЗВОДСТВО МАГНИЯ И ТИТАНА  [c.50]

Из числа сплавов цветных металлов в машиностроении наибольшее значение имеют легкие сплавы — алюминия, магния и титана, а также медь и ее сплавы, сплавы для подшипников, материалы для полупроводников и металлы и сплавы, применяемые в производстве атомной энергии. .  [c.422]

ХЭ разделе Основы производства черных - и цветных металлов кратко, поскольку указанный материал предусмотрен школьной программой, рассматриваются основные технологические процессы, оборудование и материалы, применяемые для производства черных (чугуна и стали) и цветных (меди, алюминия, магния и титана) металлов. Производство черных и цветных металлов является основой развития тяжелой индустрии, от которой зависит рост различных отраслей промышленности, увеличение выпуска всех видов продукции и удовлетворение растущих потребностей трудящихся.  [c.17]


Изложены принципы производства ферросплавов и технология некоторых из них. Рассмотрены основы технологии получения цветных металлов на примере производства меди, никеля, алюминия, магния и титана.  [c.2]

Производство черных и цветных металлов . В этом разделе излагаются процессы получения чугуна, стали, меди, алюминия, магния и титана.  [c.5]

Электролиз расплавленных солей сделал возможным промышленное производство алюминия, магния и натрия. Кроме того, этим способом получают и такие металлы, как барий, бериллий, бор, кальций, церий, ниобий, литий, редкоземельные металлы, стронций, тантал, торий и урап. Успех электролитического производства алюминия и магния способствовал интенсификации исследований по разработке подобного дешевого способа и для промышленного производства титана и циркония. Однако этим способом, видимо, можно получать только порошковые металлы, что оставляет нерешенными задачи достижения высокой степени чистоты и получения металлов в компактном виде.  [c.21]

Производство магния в капиталистических странах резко увеличивалось в годы войны. В последнее время его рост был связан с развитием производства титана и более широким применением магния в гражданской промышленности. Об этом свидетельствуют следующие данные [26—28] (в тыс. т первичного магния)  [c.485]

Хлористый магний (побочный продукт при производстве титана) можно использовать для получения магния, а хлор (побочный продукт при электролизе магния) и магний рационально применять при производстве титана.  [c.55]

В девятой пятилетке предусматривается значительно увеличить производство свинца, олова, магния, никеля, титана, вольфрамовых, молибденовых и титановых концентратов, а также драгоценных металлов.  [c.177]

Наибольшее распространение в различных отраслях машиностроения имеют сталь различных марок и сортов, алюминий и его сплавы, медь и ее сплавы (в основном латуни). В отдельных производствах используют также титан и его сплавы, магниевые сплавы, цинк и др. Штамповку титана, магния и их сплавов при наличии формоизменяющих процессов (вытяжка, формовка) осуществляют с подогревом (см. 79).  [c.262]

Мы рассмотрим производство только алюминия, магния, меди и титана, играющих важную роль в строительной индустрии.  [c.49]

Наиболее широко применяют магниетермический способ. Титан и магний обычно производят на одном заводе, так как хлористый магний — побочный продукт при получении титана служит сырьем для получения магния. При производстве же титана используют магний и хлор, который получают как побочный продукт при производстве магния.  [c.77]

Промышленное производство магния, открытого в 1828 г., началось около 60 лет назад. Магний применяется в производстве титана, используется для получения высокопрочного чугуна, входит в состав многих алюминиевых сплавов. Сплавы на магниевой основе используются как конструкционные материалы с высокой удельной прочностью и жесткостью (устойчивостью). В нашей охране производство магния началось в 1931 — 1935 гг.  [c.101]


Для дальнейшего улучшения химического состава рельсовой стали проводились опыты по введению в нее легирующих добавок, например хрома. В последние годы испытываются рельсы с микролегированием стали в виде добавок магния — 0,03% и титана 0,02%. Опыты со сталью, имеющей повышенный процент кремния (0,49—0,64%), показали, что волнообразный износ таких рельсов (см. подробнее в п. 2.3) становится меньше, чем у рельсов стандартного производства.  [c.46]

Глинистые породы состоят из частиц различного размера. Наиболее ценными для керамического производства являются тонкие глинистые фракции с зернами размером менее 5 мкм. Глины состоят из химических соединений натрия, магния, кальция, титана, железа в виде окислов и солей. В глинах содержится также некоторое количество органических веществ.  [c.52]

Легированные стали повышенной и высокой прочности занимают в народном хозяйстве одно из ведущих мест среди материалов для ответственных сварных конструкций. Титан и его сплавы являются новыми конструкционными материалами. Благодаря исключительно выгодному сочетанию удельной прочности с коррозионной стойкостью и теплоустойчивостью, они с каждым годом находят все новые и новые области применения, с успехом заменяя ряд высокопрочных и нержавеющих сталей, сплавов алюминия, магния и некоторых других цветных металлов. В настоящее время сплавы титана наряду с легированными сталями используются как в новых отраслях техники (ракетостроение, атомная энергетика, реактивная авиация), так и в судостроении, энергетическом, химическом и общем машиностроении. В решениях партии и правительства, направленных на скорейшее создание материально-технической базы коммунизма и укрепление обороноспособности нашей страны, развитию производства высокопрочных сталей и сплавов титана уделяется первостепенное внимание.  [c.5]

Промышленный способ производства состоит в обогащении и хлорировании титановой руды с последуюш,им восстановлением из четыреххлористого титана металлическим магнием. Полученная при этом титановая губка маркируется по твердости специально выплавленных из нее образцов (табл. 46).  [c.292]

Титан получают магниетермическим способом. Производство титана включает обогащение титановых руд, выплавку из них титанового шлака с последующим получением из него четыреххлористого титана и восстановление из последнего металлического титана магнием.  [c.57]

Перечислите основные способы и исходные материалы, используемые при производстве меди, алюминия, магния, титана.  [c.58]

При этом получается безводный хлористый магний Mg l2, пригодный для получения из него электролизом чистого магния. Выделяемый при электролизе магния хлор идет для производства четыреххлористого титана Т1С14. Поэтому обычно комбинируют производства магния и титана, так как они взаимно снабжают друг друга необходимыми реагентами.  [c.120]

Как установлено Кролем в его экспериментальной работе, использование тетрахлорида титана в качестве исходного сырья для восстановления может предотвратить загрязнение металла кислородом и азотом. Тетрахлорид титана легко подвергается очистке и удобен в обращении, поскольку при комнатной температуре он представляет собой жидкость с температурой кипения 136,4°. Магний является вполне пригодным металлом-восстановителем. Он сравнительно дешев и допускает повторное использование, поскольку в процессе восстановления образуется в основном хлорид магния, который может быть электролитически восстановлен до металла.. Хотя реакция между расплавленным магнием и тстрахлоридом титана протекает энергично с выделением большого количества тепла, она все же довольно легко поддается регулированию. Па ранее существовавших опытных заводах образующийся в результате реакции восстановления хлорид магния отделяли от титанового порошка, который оказывался в нем диспергированным, путем промывки холодной соляной кислотой. Получавшийся при этом титановый порошок превращали в пластичный металл путем прессования и спекания, т. е. обычными методами порошковой металлургии. В промышленном производстве хлорид магния и остаток магния отгоняют в вакууме из титановой губки, которую затем дробят на куски, пригодные по величине для переплавки в слитки в дуговых или индукционных иечах.  [c.761]


Металлический титан и цирконий получают, спекая под вакуумом металлическую губку, полученную восстановлением хлоридов этих металлов щелочными металлами или магнием или же восстановлением окислов титана и циркония металлическим кальцием (метод Кролля) [1, 2]. Технология производства этих металлов совершенствуется [3, 4], и в настоящее время получены металлы с чистотой до 99,5% и выше примесями являются железо, магний и адсорбированные кислород и азот [5—8, 10].  [c.424]

Преимущества сварки в защитных газах обусловили области ее применения. Аргонодуговую сварку применяют при производстве конструкций из. легких (алюминия и магния) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и сплавов, а также конструкщюнных легированных и высоколегированных сталей. В последнем случае широко используют смеси аргона марки В с 3—5%0о и углекислого газа. Дуга в смесях газов обладает лучшими технологическими свойствами по сравнению с чистым аргоном повышается стабильность горения дуги, улучшается формирование шва и т. и. Для легких сплавов применяют аргон марки Б, а для тугоплавких — аргон высокой чистоты марки А.  [c.296]

Расширение производства металлов и сплавов имеет особенно важное значение в период построения экономики коммунистического общества. По пятилетнему плану развития народного хозяйства на 1970 г. намечено увеличение производства чугуна (до 94— 97 млн. т) и стали (до124—129 млн. т). Одновременно предусмотрено увеличение производства важнейших цветных металлов алюминия (в 1,9—2,1 раза), меди и цинка (в 1,6—1,7 раза), титана, магния, никеля, свинца, олова и др. В машиностроении эти металлы необходимы для получения сплавов с особыми свойствами, которые применяют при изготовлении целого ряда деталей машин и приборов.  [c.23]

В СССР сварка в защитных газах получит еще большее развитие в текущем семилетии. К концу 1965 г. объем ее увеличится в шесть раз. Это непосредственно связано с запланированным к тому же сроку ростом (по сравнению с 1958 г.) производства алюлминия (почти в три раза), меди (почти в два раза), никеля, магния, титана, германия, кремния. Увеличивается производство также и других цветных и особенно редких металлов. Прн изготовлении изделий из сплавов цветных и редких металлов основным видом сварки будет, как и является теперь, сварка в среде защитных газов.  [c.115]

Описаны теория и практадка производства цветных металлов (медн, никеля, свинца, цинка, алюминия, магния, титана, вольфрама, молибдена, золота). Рассмотрены технологические схемы, их аппаратурное оформление и технико-экономические показатели.  [c.21]

Цирконий в компактном состоянии — металл серебристо-белого цвета, похожий на сталь. Порошок в зависимости от чистоты и дисперсности имеет цвет от черного до серого. Применяют в электровакуумной технике, в атомных реакторах и т. д., а также в качестве основы припоя для пайки титана и его сплавов, защитных покрытий, для повышения теплостойкости магниевых сплавов и т. д. По условиям производства различают магниетермический (восстановлением циркония магнием из четыреххлористого циркония), йодидный (термической диссоциацией тетрайодида в вакууме) и др. Состав магниетермического и йодидного циркония приведен в табл. 62,  [c.106]

С момента выхода в свет последней книги по металлургии цветных металлов с аналогичным данному учебнику назначением прошло более 15 лет (И. И. eBpfOKOB. Металлургия цветных металлов. М. Металлургия, 1969). За это время произошел значительный прогресс в технологии получения большинства цветных металлов и в аппаратурном оформлении технологических процессов разработаны и внедрены новые процессы и оборудование. В данном учебнике, предназначенном для ряда специальностей учащихся металлургических техникумов, приведены достижения цветной металлургии за последние годы. С учетом этих достижений рассмотрены общие вопросы металлургического производства, а также основы производства важнейших цветных металлов меди, никеля, свинца, цинка, золота, алюминия, магния, титана, вольфрама, молибдена.  [c.6]

Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алюминия, железа и магния. Однако промьшшенный способ его извлечения был разработан лишь в 40-х годах XX века. Благодаря прогрессу в области са-молето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность f Tj/p -g), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд другрсх ценных физико-механических характеристик, приведенных ниже.  [c.697]

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746-79) в зависимости от химического состава и механических свойств вьшускают следующих марок ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-Тв (см. табл. 17.1). Цифры означают твердость по Бринеллю ИВ, Тд — твердый.  [c.698]

Титан — металл серебристо-блестящего цвета, не тускнеющего на воздухе. Благодаря сочетанию небольшой плотности, высокой прочности и коррозионной устойчивости к многим агрессивным средам (в частности, к морской воде) титан и его сплавы широко внедряются в качестве конструкционного машиностроительного материала. Титан высокой чистоты (йодидпый) изготовляется трех сортов (табл. 48). Технический титан (губчатый) полз чают восстановлением четыреххлористого титана магнием или натрием, титан поставляется по ведомственным ТУ (табл. 49) для производства титановых полуфабрикатов и сплавов.  [c.148]

Многолетний опыт эксплуатации оборудования в производстве хлората магния показал, что для проведения реакции обмена между хлоратом натрия и хлоридом магния применение эмалированных аппаратов нерационально, так как силикатная эмаль при резких температурных колебаниях (что обычно имеет место при периодическом ведении процесса) подвергается растрескиванию. Растрескавшаяся силикатная эмаль в цеховых условиях практически не поддается качественному ремонту. Применяемые способы заделки поврежденных участков эмалированной поверхности эпоксидными композициями, а также другими материалами не обеспечивают продолжительную работу аппарата. Поэтому реактор наиболее целесообразно изготовлять из титана, практически не под-вергаюшегося коррозионному разрушению в условиях реакции обмена (3).  [c.365]



Смотреть страницы где упоминается термин Производство магния и титана : [c.367]    [c.316]    [c.139]    [c.182]    [c.120]    [c.485]    [c.761]    [c.105]    [c.25]    [c.758]    [c.893]    [c.391]    [c.250]    [c.323]   
Смотреть главы в:

Технология металлов и других конструкционных материалов  -> Производство магния и титана



ПОИСК



Магний

Магния производство

Производство меди, алюминия, магния и титана

Титан

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте