Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Ковка и штамповка — Температур

Другим способом производства заготовок является ковка и штамповка. Поковки могут быть получены ковкой в подкладных штампах, штамповкой в закрепленных штампах и специальными методами. Значительная экономия металла при изготовлении некоторых деталей достигается при применении совмещенной штамповки и использовании отходов. Если от детали не требуется мелкозернистая структура, а механические свойства удовлетворяют требованиям независимо от температуры окончания штамповки, то заканчивать штамповку следует при повышенной температуре. Для деталей, например, из углеродистой стали эти требования позволяют повысить производительность труда на 10—15%, сократить машинное время на 25— 30%, повысить стойкость штампов и облегчить заполнение ручья.  [c.351]


Общим для всех марок стали и сплавов является стремление производить их ковку и штамповку в однофазном состоянии, обеспечивающем их большую гомогенность при минимальном образовании внутренних напряжений. В крупных слитках углеродистой и низколегированной стали составляющие сплава обычно успевают достаточно полно перейти в твердый раствор за время выдержки, необходимой для выравнивания температуры по сечению.  [c.26]

Окалина, образующаяся на металле при его нагреве и длительной выдержке в области ковочных температур, вызывает значительные потери металла, усложняет технологические процессы ковки и штамповки, увеличивает износ штампов, а иногда приводит к браку поковок. Пр 1 нагреве углеродистых сталей до температуры обработки такие потери примерно составляют 4—6% к весу заготовки.  [c.31]

Полный отжиг. Его применяют главным образом после горячей обработки деталей (ковки и штамповки), а также для обработки отливок из углеродистых и легированных сталей. Основной целью полного отжига кованых и литых деталей является измельчение зерна — придание металлу необходимой твердости для улучшения его обработки резанием и устранения внутренних напряжений. Это достигается нагревом, не превышающим 20—40° С верхней критической точки Лсз, и медленным охлаждением. Температуру нагрева деталей, изготовленных из углеродистых сталей, определяют по стальной части диаграммы состояния (рис. 16), а для легированных сталей — по положению их критической точки Лсз, имеющейся в справочных таблицах. Время выдержки при температуре отжига обычно складывается из времени, необходимого для полного прогрева всей массы детали, и времени, необходимого для окончания структурных превращений. После нагрева и соответствующей выдержки сталь медленно охлаждают вместе с печью. Углеродистые стали охлаждают со скоростью 50—100° С в час до температуры 580—600° С. Низколегированные стали охлаждают в печи со скоростью 30—60° С в час до 500—600° С (в зависимости от химического состава стали). Высоколегированные стали целесообразнее подвергать изотермическому отжигу, так как обычным отжигом не всегда удается получить нужное снижение твердости. Полный отжиг сопровождается перекристаллизацией и законченным превращением аустенита в ферри-то-цементитную смесь.  [c.24]

Рекомендуемые интервалы температур ковки и штамповки углеродистых, легированных и инструментальных сталей приведены в табл. 2—4.  [c.97]


Полный отжиг применяют главным образом после горячей обработки деталей (ковки и штамповки), а также для обработки литья из углеродистых и легированных сталей. Основной целью полного отжига кованых и литых деталей является измельчение зерна. Полный отжиг осуществляется путем нагрева стали на 30—50° С выше линии 05К (точка Асз) (рис. 31), выдержки при этой температуре и последующего медленного охлаждения вместе с печью. Время выдержки при нагреве должно быть достаточным для прогрева изделий по всему сечению.  [c.69]

В углеродистой стали сера взаимодействует с железом, в результате чего образуется сернистое железо, дающее с железом относительно легкоплавкую эвтектику, которая располагается по границам зерен. При температурах ковки, горячей штамповки и прокатки эвтектика находится в жидком состоянии. В процессе горячей пластической деформации по границам зерен образуются трещины.  [c.96]

Температуры ковки и горячей штамповки углеродистых сталей  [c.136]

Наглядное представление о кристаллизации и структурных превращениях при нагреве и охлаждении углеродистых сталей дает графическое изображение — диаграмма состояния сплавов железо — углерод. По ней определяют температуру плавления и застывания стали с различным содержанием углерода, изменение структуры. Диаграмма состояния помогает устанавливать правильные режимы ковки, штамповки, прокатки углеродистых сталей и их последующей термической обработки.  [c.63]

Нормализация—нагрев материала до температуры, незначительно превышающей температуру верхней критической точки стали, выдержка и постепенное охлаждение на воздухе или вместе с печью. Нормализации подвергают качественные углеродистые и легированные стали, а также заготовки из стального литья. Она снимает литейные напряжения и наклеп (после ковки или штамповки) и обеспечивает получение равномерной структуры материала по всему объему заготовки.  [c.88]

Способность титана и его сплавов к формоизменению при штамповке и ковке несколько хуже, чем аустенитных нержавеющих и углеродистых сталей. С повышением температуры выше 20 °С прочностные характеристики монотонно снижаются, а пластические вначале немного снижаются, а затем резко возрастают. Титан и его сплавы обладают высокой упругой отдачей, малым диапазоном пластического деформирования (оцениваемого по отношению пониженными значениями равномерного удлинения и сужения, что усложняет процесс формоизменения заготовок. Снижение пластичности происходит в диапазоне 300—400 °С.  [c.234]

Присутствие серы в большом количестве приводит к образованию трещин лри ковке, штамповке и прокатке в горячем состоянии. Это явление называется красноломкостью. В углеродистой стали сера взаимодействует с железом, в результате чего образуется сернистое железо FeS. Сернистое железо образует с железом относительно легкоплавкую эвтектику, которая располагается ло границам зерен. При температурах ковки, штамповки, прокатки в горячем состоянии эвтектика FeS — Fe находится в жидком состоянии. В процессе горячей пластической деформации по границам зерен, где располагается жидкая эвтектика, образуются горячие трещины.  [c.102]

Если углеродистая сталь нагревается под ковку, штамповку, высадку, гибку и другие кузнечные операции, температуру заготовок можно определять по цвету каления (табл. 121).  [c.365]

Все стандартные нержавеющие стали легко поддаются горячей обработке путем ковки, прессования, штамповки или экструзии, хотя эти стали, в особенности сорта, содержащие никель, жестче , чем низколегированные или углеродистые стали. Для сплавов Ре— Сг и Ре—Сг-N1 обычно используют температуры 1100—900° С и 1200—900 С соответственно. Для достижения оптимальных механических свойств, а иногда и коррозионной стойкости, после формовки обычно проводят термическую обработку. Для мартенситных сталей, как правило, применяют нормализацию и отпуск (воздушное охлаждение от температуры аустенитизации, а затем повторный нагрев до определенной температуры ниже точки образования аустеннта), отжиг (охлан дение в печи от температуры аустенитизации) или простой отпуск. Для ферритных сталей обычно применяют нагрев до 750—800° С с последующим воздушным охлаждением, а аустенитные стали чаще всего нагревают до 1000— 1100° С с последующим воздушным охлаждением или закалкой (в зависимости от марки стали и поперечного сечения изделия). При больших сечениях изделий во избежание растрескивания не следует допускать резких изменений температуры в ходе нагрева и охлаждения ферритных сталей, а также мартенситных сталей в закаленном состоянии. Аустенитные стали очень стойки к растрескиванию, но сильные градиенты температур могут вызвать коробление.  [c.28]


Наблюдения за изменением пластичности и сопротивления деформации стали в пределах скоростей обработки 0,1—8,0 Mj eK, наиболее широко применяемых при обработке металлов ковкой-штамповкой, указывают на следующие соотношения между скоростями разупрочнения и упрочнения. При деформации осадкой углеродистой стали (0,450/оС) в зоне температур ковки под молотом сопротивление деформации возрастает почти в 4 (при температуре 1150° С) — 2,5 (при температуре 850 С) раза по сравнению с осадкой под прессом (фиг. 39) [18]. Обработка ковкой-  [c.288]

Пластичность литого металла определяется как величиной дендритов, так и протяженностью второй и третьей зон и особенно второй зоны дендритной структуры слитка. Этим же обусловливается и получение тонкой или грубоволокнистой макроструктуры в деформированных ковкой, прокаткой или штамповкой углеродистых и легированных сталях. Чем больше протяженность и величина дендритов второй и третьей зон слитка, тем меньше пластичность литого металла и тем в большей степени в деформированном металле образуется грубоволокнистая структура. Улучшение структуры и металлургической природы металла может быть достигнуто повышением скорости охлаждения или кристаллизации жидкого металла, понижением температуры разливаемой стали и скорости разливки в изложницы, применением вибрирующих изложниц до ультразвуко)Вых колебаний и других технологических мероприятий.  [c.9]


Смотреть страницы где упоминается термин Углеродистая Ковка и штамповка — Температур : [c.169]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.43 ]



ПОИСК



Ковка

Ковка Температура

Ковка и штамповка

Р углеродистое

Температура Температура ковки и штамповки

Температура штамповки

Ч ковкий

см Ковка и штамповка — Температур



© 2025 Mash-xxl.info Реклама на сайте