Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Пределы прочности длительной

Фиг. 119. Зависимость предела прочности углеродистой стали от длительности растяжения [I]. Фиг. 119. Зависимость <a href="/info/1682">предела прочности</a> <a href="/info/6795">углеродистой стали</a> от длительности растяжения [I].

Последнее условие необходимо учитывать, если расчетная температура стенки превышает 420° С для углеродистых сталей, 470° С — для низколегированных сталей и 550° С — для сталей аустенитного класса. Для каждой марки стали возможны некоторые колебания величин пределов прочности, текучести и длительной прочности вследствие колебаний химического состава, режима термической обработки и по другим причинам. При выборе номинальных допускаемых напряжений предел текучести и предел прочности принимают равными минимальным значениям этих характеристик для стали одной марки.  [c.187]

Рис. 47. Зависимость предела прочности от длительности растяжения (углеродистые стали) Рис. 47. Зависимость <a href="/info/1682">предела прочности</a> от длительности растяжения (углеродистые стали)
С другой стороны, в пределах одного исследования получаются весьма близкие величины отношения Сц.- // для различных сталей, что иллюстрируется кривыми (рис. 274), отображающими температурную зависимость отношения а для углеродистой, марганцовистой и хромоникелевой сталей. Очевидно, наблюдающиеся расхождения, указанные в табл. 37, связаны с влиянием фактора времени на результаты горячих испытаний. Влияние этого фактора на результаты испытаний металлов на твердость при высоких температурах было рассмотрено достаточно подробно. Еще большее значение имеет фактор времени при горячих разрывных испытаниях. Как указывалось в главе П, в зависимости от длительности нагружения при постоянной температуре можно получить для данной стали совершенно различные численные значения пределов прочности и текучести.  [c.313]

На фиг. 173 показана кривая зависимости предела прочности углеродистой стали, содержащей 0,4% С, от длительности растяжения образца при 600°.  [c.202]

Фиг. 173. Зависимость предела прочности углеродистой стали, содержащей 0,4 /о С, от длительности испытания при 600°. Фиг. 173. Зависимость <a href="/info/1682">предела прочности</a> <a href="/info/6795">углеродистой стали</a>, содержащей 0,4 /о С, от длительности испытания при 600°.

При температурах до 300—350 С предел ползучести при длительном нагружении стали остается выше предела текучести. Поэтому при работе до 300— 350° С применяют углеродистые и легированные конструкционные стали общего назначения, однако при условии, что допускаемые напряжения исчисляются по отношению к пределу текучести или к пределу прочности, определенных при указанной температуре  [c.128]

Механические свойства стали изменяются при повышении температуры. На фиг. 273 приведена зависимость предела прочности и предела текучести от температуры для обычной углеродистой стали. Из этой диаграммы видно, что повышение температуры вызывает снижение предела текучести а-р сначала медленное, а потом все более резкое. Предел прочности сначала несколько повышается, а потом тоже резко падает, причем тем больше, чем дольше металл находится под напряжением. Другими словами, при высоких температурах предел прочности и предел текучести aJ не могут уже являться критериями оценки длительной прочности.  [c.420]

Данные по пределам ползучести для углеродистых, конструкционных и жаропрочных сталей даны в табл. 9. Данные по пределам длительной прочности для некоторых жаропрочных сталей прине-дены в табл. 10.  [c.432]

Условие (7-3) необходимо учитывать, если расчетная температура стенки превышает 425° С для углеродистых и низколегированных марганцовистых сталей, 475° С — для низколегированных жаропрочных сталей и 550° С — для сталей аустенитного класса. В каждой стали возможны некоторые колебания величин временного сопротивления, предела текучести и предела длительной прочности из-за колебаний химического состава и режима термической обработки, а также и по другим причинам. Коэффициент запаса прочности должен обеспечить надежную работу элементов котла при любых практически возможных отклонениях характеристик прочности от средних. В Нормах приняты следующие запасы прочности ит = %.п=1,5 и в = 2,6.  [c.363]

Коэффициенты запаса прочности при расчетах на статическую прочность можно классифицировать по роду металла — деформируемому (поковки, штамповки, прокат) или литому, а также исходя из температуры. Последняя определяет для каждой марки стали и сплава основные характеристики, к которым применяется коэффициент запаса. Так, например, для углеродистых сталей, начиная примерно с 350° С, необходимо принимать во внимание также ползучесть металла и относить коэффициенты запаса к длительным характеристикам, а не только к пределу текучести при рабочей температуре. Для теплоустойчивых и жаропрочных сталей перлитного класса (хромистых нержавеющих и аналогичных им) эта температура составляет примерно 430°С, а для аустенитных 480—520° С, в зависимости от марки стали. Это верхние пределы умеренных температур для данных классов деталей.  [c.30]

На пределе длительной прочности при одном и том же химическом составе сказывается способ производства стали и способ раскисления. Сталь, полученная в электропечах, лучше мартеновской стали. Легированную сталь получают только спокойной. Но углеродистая сталь может быть полуспокойной и кипящей. Лучшая длительная прочность получается у спокойной стал , затем у полуспокойной. Наихудшая длительная прочность у кипящей стали.  [c.185]

Основной способ увеличения сопротивления ползучести и предела длительной прочности сталей — легирование. Углеродистые стали можно применять при температурах до 450—475° С. При более высоких температурах сопротивление ползучести и длительная прочность углеродистых сталей резко снижаются, и необходимо применять легированные стали.  [c.190]


Наибольшему воздействию водорода, как известно, подвергаются углеродистые и низколегированные стали, у которых в результате водородной коррозии значительно снижается межкристаллитная прочность, определяющая уровень длительной прочности сталей. Для стали 20 было экспериментально показано [4, 5, 31, 32, 38, 86], что при температурах 350—500°С и давлениях 14—57 МПа происходит снижение пределов длительной прочности (рис. 72).  [c.122]

При азотировании с целью получения высокой твердости обычно применяются стали, содержащие в качестве легирующих элементов алюминий, хром и молибден. Недостаток этого способа, несмотря на то, что он обеспечивает поверхностную высокую твердость и резкое повышение усталостной прочности, заключается в длительности процесса. В этом отношении значительный интерес представляет способ кратковременного антикоррозионного азотирования, разработанный ЦНИИТМАШем. Этот способ позволяет азотировать углеродистые стали и чугуны при длительности процесса в пределах от 10 мин. до 3 час. в зависимости от температуры режима, при этом толщина азотированного слоя получается в пределах от 10 до 100 мк.  [c.219]

В качестве расчетной характеристики предел текучести при высоких температурах может использоваться для углеродистой стали — до 300—350°, для мало- и среднелегированной стали перлитного класса — до 400—450°. При более высоких температурах, в связи с усилением зависимости числовых значений предела текучести от длительности нагружения на отдельных стадиях испытания, расчет конструкций, предназначенных для длительной службы, требует обязательного учета деформаций ползучести и потому не может базироваться на пределе текучести или, точнее говоря, только на пределе текучести. Практически предел текучести имеет значение в качестве расчетной характеристики и при значительно более высоких температурах, являясь распространенным средством проверки допускаемых напряжений, определенных на базе условного предела ползучести и предела длительной прочности. По немецким нормам (DIN 2413), например, в расчетах на прочность при высоких температурах следует руководствоваться наименьшим из следующ их четырех значений  [c.246]

Из приведенных экспериментальных данных следует, что пределы ползучести и длительной прочности углеродистой и легированной стали при высоких температурах снижаются много сильнее предела усталости. Уже при 350—400° предел усталости углеродистой стали располагается выше предела ползучести, что видно, например, из диаграммы рис. 253.  [c.290]

Для изготовления деталей, работающих при температурах до 450 °С, применяют углеродистые стали марок ЗПС, ЗСП, ЗКП, 10, 15, 20, 35, 40, 45, 20Х, 40Х, 65Г (см. табл. 3.1). Для деталей, работающих до 350 °С, расчет на прочность ведется по пределу текучести, а свыше 350 С следует пользоваться характеристиками ползучести и длительной прочности. Механические, жаропрочные и физические свойства углеродистых сталей даны в табл. 3.6, 3.7 и на рис. 3.1 [1].  [c.86]

Методом пропитки в вакууме получали композиционный материал на основе алюминия, упрочненного нитевидными кристаллами окиси алюминия. Технологический процесс заключался в предварительном получении полуфабрикатов в виде ленты из проволочной сетки с нанесенными на нее после воздушной сепарации нитевидными кристаллами. Такая лента разрезалась на отрезки определенной длины, которые подвергались на специальной установке прокатке до необходимой толщины. На полученные таким образом листы методом катодного напыления наносили покрытие из нихрома (60% Ni —24% Fe—16% r) или из углеродистой стали. Листы с покрытием пропитывались жидким алюминием. Полученный таким образом материал, содержащий 20 об.% нитевидных кристаллов AI2O3, имел при 500° С предел прочности 21 кгс/мм и длительную, 100-часовую прочность при этой же температуре 8,4 кгс(мм . По данным работы [174] модуль упругости композиции алюминий — усы AljOa составлял 12 6000 кгс/мм2.  [c.100]

При длительном режиме работы с постоянной или мало-меняющейся нагрузкой определение допускаемых изгибных напряжений при симметричном цикле производится по формуле [а/г]=а ]/ц при отнулевом цикле [з/ ] = 1,5а 1//г, где п = = 1,3. .. 2—коэффициент запаса прочности. Предел выносливости можно определять по формулам а ] = 0,430 — для углеродистых сталей а 1 = 0,350 + (70... 120) МПа — для легированных сталей а 1 = 85. . . 105 МПа — для бронз и латуней а [ = (0,2. . . 0,4) — для деформируемых алюминиевых сплавов для пласт-  [c.217]

Рис. 7.23. Температурные зависимости пределов выносливости (сплошные кривые) и пределов длительной прочности (пунктирные кривые) для одинаковой длительности нагружения / — сталь малоуглероди-стая 5 — сталь углеродистая S — сталь углеродистая улучшенная. Рис. 7.23. <a href="/info/191882">Температурные зависимости</a> <a href="/info/1473">пределов выносливости</a> (сплошные кривые) и <a href="/info/7027">пределов длительной прочности</a> (пунктирные кривые) для одинаковой <a href="/info/39299">длительности нагружения</a> / — сталь малоуглероди-стая 5 — <a href="/info/6795">сталь углеродистая</a> S — <a href="/info/6795">сталь углеродистая</a> улучшенная.
Об устойчивости остаточных напряжений во вре.мени можно судить по косвенным показателям, например, как это сделано в работах И. В. Кудрявцева, по сохранению с течение.м времени эффекта этих напряжений в усталостной прочности стальных деталей. В этих работах на опытах с образцами из углеродистой стали марок 40 и Ст. 5 показано, что длительное вылеживание (в течение 1—2 лет) не приводит к понижению их усталостной прочности, а следовательно, и к снятию остаточных напряжений это положение подтверждено испытаниями образцов, подвергавшихся еще более длительному вылеживанию (в течение 4 лет). Имеются аналогичные результаты, полученные на образцах после 10-летнего вылеживания. Показано также влияние переменных нагружений на устойчивость остаточных напряжений. Была использована зависимость между пределом пропорциональности при растяжении стальных образцов и остаточными напряжениями в них. Исследования проводились на образцах из углеродистой стали марок 40 и Ст. 5. Показано, что величина остаточных напряжений может снижаться под влиянием усталостной тренировки. Но это уменьшение, происходящее в начальном периоде тренировки, имеет место только при напряжениях, больших 0,9 предела выносливости данного материала.  [c.224]


Механические свойства при вы- соких температурах. Предел длительной прочности (табл. 15). Условный предел длительной прочности за 100 ООО ч у чугуна с перлитной структурой такой же, что и у углеродистой стали, а у чугуна с ферритной структурой — ниже.  [c.148]

Расчетное допускаемое напряжение материала трубы при рабочей температуре 0, определяют умножением номинального допустимого напряжения Одоп на поправочный коэффициент т], учитывающий особенности конструкции и эксплуатации трубопровода. Для трубопроводов и поверхностей нагрева, находящихся под внутренним давлением, г) = 1. Номинальное допускаемое напряжение принимается по наименьшей из величин, определяемых гарантированными прочностными характеристиками металла при рабочих температурах с учетом коэффициентов запаса прочности для элементов, работающих при температурах, не вызывающих ползучесть, — по временному сопротивлению и пределу текучести Для элементов, работающих в условиях ползучести, у которых расчетная температура стенки превышает 425°С для углеродистых и низколегированных марганцовистых сталей, 475 С для низколегированных жаропрочных сталей и 540°С для сталей аустенитного класса, — по временному сопротивлению, пределу текучести и пределу длительной прочности. Расчет на прочность по пределу ползучести Нормами не предусматривается, так как соблюдение необходимого запаса по длительной прочности обеспечивает прочность и по условиям ползучести. В табл. 8-6 приведены значения номинальных допускаемых напряжений для некоторых сталей.  [c.148]

Существующий опыт выбора сталей для конструкций высокого давления показывает, что оценка их работоспособности при повы-щенной температуре по прочности и пластичности, определенных при испытаниях металла без учета временнбго фактора, допускается для углеродистой стали при температуре не выше 380 °С, для низколегированной стали при температуре 420...450 °С, для аустенит-ной стали при температуре не выше 525 °С. При более высоких температурах эксплуатации прочностные и пластические характеристики сталей следует оценивать с учетом влияния длительности воздействия статических нагрузок и температур. В этих условиях свойства стали оцениваются исходя из следующих характеристик временного сопротивления предела длительной прочности максимальной пластичности при разрушении.  [c.815]

Введение в сталь небольших количеств легирующих элементов, начиная от такого слабого карбидообразующего элемента, как марганец (стали ШГС, 09Г2С), и до сталей с 1 —1,5% Сг и добавками молибдена (стали ЗОХМА, 12МХ, 12ХМ), приводит к заметной стабилизации цементита и значительно меньшему снижению пределов длительной прочности в водороде по сравнению с углеродистыми  [c.404]

Для отожженной углеродистой стали, содержащей 0,22% С 0,52% Мп 0,24% Si, Рапатц [7] приводит следующие характеристики прочности при 50(Р предел длительной прочности для 10 000-часового испытания — около 7 напряжение, вызывающее  [c.834]

На фиг. 19 изображен график зависимости от времени предела длительной прочности углеродистой стали 20, а точками представлены величины разрушающего эквивалентного напря-  [c.252]


Смотреть страницы где упоминается термин Углеродистая Пределы прочности длительной : [c.52]    [c.242]    [c.218]    [c.60]    [c.201]    [c.137]    [c.12]    [c.225]    [c.57]    [c.156]    [c.123]    [c.124]    [c.260]    [c.309]    [c.120]    [c.146]    [c.167]    [c.186]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.290 ]



ПОИСК



2.254 — Пределы длительной

Предел длительной прочност

Предел длительной прочности

Предел длительной прочности прочности

Предел прочности

Прочность длительная

Р углеродистое

Сталь жаропрочная Предел длительной углеродистая — Прочность механическая— Характеристики

Углеродистые Длительная прочность



© 2025 Mash-xxl.info Реклама на сайте