Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Углеродистая Прочность — Характеристики

В состав низколегированных сталей входят малые добавки таких элементов, как медь, хром, никель, молибден, кремний и марганец, за счет чего и достигается повышение прочности по сравнению с углеродистой сталью. Коммерческой характеристикой низколегированных сталей является не строгий химический состав, а их прочностные свойства. Суммарное содержание легирующих добавок обычно составляет около  [c.42]


При нагревании углеродистых сталей временное сопротивление (предел прочности) сначала повышается (до t = 390° С), потом резко снижается. Характеристики пластичности сначала уменьшаются (до t = 300" С), потом увеличиваются. На рис. 2.19, а, б, в показаны кривые зависимости от температуры механических характеристик а , характеристик пластичности фо>  [c.41]

Материалы крепежных деталей. Основные механические характеристики (предел прочности Ств, предел текучести ст , относительное удлинение 65 и др.) материалов шпилек, болтов, (винтов) и гаек нормированы ГОСТ 1759 — 82. Для болтов, винтов и шпилек из углеродистых и легированных сталей установлены 12 классов прочности и соответствующие им рекомендуемые марки сталей. В зависимости от прочности материалов установлены 7 классов прочности для гаек, изготовляемых из тех же сталей (табл. 32.1).  [c.503]

Пример 18.1. Определить коэффициент запаса прочности стального стержня диаметром d = 50 мм, если он нагружается силой Р, изменяющейся от -100 кН (сжатие) до +250 кН (растяжение). Стержень изготовлен из углеродистой стали с механическими характеристиками Oj = = 420 МПа, а-,р = 230 МПа, il< = 0,l2. Принять = = 1,5.  [c.189]

Необходимо учитывать, что значительное увеличение скорости соударения следует рассматривать как одну из причин существенного изменения начальных значений механических характеристик материалов взаимодействующих пар. Общая тенденция при этом сводится к увеличению показателей прочности стали и снижению ее пластичности. Значительное охрупчивание углеродистых сталей при скоростях соударения 6—7 м/с — одна из причин резкого повышения их износа.  [c.97]

Углеродистые стали широко применяются в машиностроении. Так, например, стали 30 и 35 используются для изготовления деталей, испытывающих небольшие напряжения осей, валиков, шпинделей, тяг, рычагов и т. д. Стали 40 и 45, имеющие более высокие прочностные характеристики, применяются для изготовления коленчатых валов, шатунов, зубчатых колес, маховиков, головок цилиндров, осей прокатных валов и для других нормализуемых, улучшаемых и подвергаемых поверхностной обработке деталей, от которых требуется повышенная прочность.  [c.77]

Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести).  [c.66]


Хромоникелевые стали типа 18-8 18-8 с Ti 18-8 с Nb 23-18 15-35 16-13-2 Мо и др. по своим характеристикам жаропрочности (длительной прочности и сопротивлению ползучести) превосходят углеродистую сталь, хромистые стали мартенситного  [c.144]

Ниже приведены данные о периодах решетки соединений и твердых растворов металлов с бором, углеродом, азотом и кислородом. Эти фазы во многих машиностроительных материалах определяют их механические характеристики. Например, в углеродистых сталях прочность зависит в основном от твердых растворов углерода в железе (мартенсита и аустенита) и от соединения железо-углерод (цементита).  [c.116]

Характеристики механической прочности углеродистой стал  [c.429]

Условие (7-3) необходимо учитывать, если расчетная температура стенки превышает 425° С для углеродистых и низколегированных марганцовистых сталей, 475° С — для низколегированных жаропрочных сталей и 550° С — для сталей аустенитного класса. В каждой стали возможны некоторые колебания величин временного сопротивления, предела текучести и предела длительной прочности из-за колебаний химического состава и режима термической обработки, а также и по другим причинам. Коэффициент запаса прочности должен обеспечить надежную работу элементов котла при любых практически возможных отклонениях характеристик прочности от средних. В Нормах приняты следующие запасы прочности ит = %.п=1,5 и в = 2,6.  [c.363]

Характеристики механической прочности углеродистой стали в кГ/мм  [c.472]

Использование легированной стали должно быть обусловлено необходимостью обеспечения определенных высоких механических характеристик для ответственных деталей при одновременном стремлении к максимальному сокращению размеров этих деталей. Например, для быстроходных валов, если диаметры их ступеней определяются исходя из требований жесткости, применять легированную сталь нерационально, так как величина модуля упругости у всех видов стали почти одинакова. Что же касается прочности, то расчет на жесткость дает такие размеры сечений, при которых фактические напряжения чаще всего оказываются значительно ниже допускаемых, даже для сравнительно дешевой углеродистой конструкционной стали. Необходимая твердость поверхностей соответствующих ступеней вала может быть получена путем поверхностной закалки т. в. ч. В указанных случаях применение легированной стали может быть оправдано лишь условиями работоспособности шлиц, если таковые имеются.  [c.24]

Сравнение прочностных и весовых характеристик деталей, изготовленных из углеродистой и низколегированной сталей (Wi). Сравнение легированных, низколегированных и углеродистых сталей по прочности и себестоимости (434).  [c.545]

Коэффициенты запаса прочности при расчетах на статическую прочность можно классифицировать по роду металла — деформируемому (поковки, штамповки, прокат) или литому, а также исходя из температуры. Последняя определяет для каждой марки стали и сплава основные характеристики, к которым применяется коэффициент запаса. Так, например, для углеродистых сталей, начиная примерно с 350° С, необходимо принимать во внимание также ползучесть металла и относить коэффициенты запаса к длительным характеристикам, а не только к пределу текучести при рабочей температуре. Для теплоустойчивых и жаропрочных сталей перлитного класса (хромистых нержавеющих и аналогичных им) эта температура составляет примерно 430°С, а для аустенитных 480—520° С, в зависимости от марки стали. Это верхние пределы умеренных температур для данных классов деталей.  [c.30]

В качестве примера на рис. 461 приведены кривые изменения характеристик прочности и пластичности углеродистой стали (0,15% С) с повышением температуры до 800°.  [c.572]

Использование ингибиторов по сравнению с другими методами защиты от коррозионного разрушения имеет ряд преимуществ не требуется изменения существующих технологических процессов, улучшаются санитарно-гигиенические условия труда, сокращаются простои оборудования, возможна замена дефицитных, дорогостоящих сталей (например, нержавеющих) обычными углеродистыми. Проведенные в последнее время исследования показали, что, защищая металл от коррозии, ингибиторы одновременно могут сохранять, а в некоторых случаях и существенно повышать механические характеристики металлов и сплавов (прочность, пластичность), подавлять коррозионное растрескивание, повышать усталостную прочность сталей и т. п. В ряде случаев применение ингибиторов позволило улучшить технологические параметры некоторых процессов (теплопередачу, гидродинамические условия потоков и т. п.), интенсифицировать процесс, повысить качество продукции и получить значительный экономический эффект.  [c.7]


На рис. 118 показана зависимость предела текучести и относительного удлинения от степени деформации для углеродистой стали У10. При достижении общего относительного обжатия в 50 % предел текучести и предел прочности увеличились в два с лишним раза, а относительное удлинение уменьшилось с 30 до 2,5%. Значительное увеличение прочностных характеристик металла и почти полная потеря пластичности, как результат  [c.249]

ОСТ 108.961.02-79 Отливки из углеродистых и легированных сталей для деталей паровых стационарных турбин с гарантированными характеристиками прочности при высоких температурах. Технические условия.  [c.772]

ОСТ 108.961.03-79 Отливки из углеродистой и легированной стали для фасонных элементов паровых котлов и трубопроводов с гарантированными характеристиками прочности при высоких температурах. Технические условия.  [c.772]

Конструкционные строительные стали и сплавы. Свойства этих сталей и сплавов определяются в основном механическими (предел прочности, относительное удлинение, твердость, ударная вязкость) и технологическими (жидкотекучесть, свариваемость, ковкость и др.) характеристиками. Для конструкционных строительных сталей и сплавов используются углеродистые (0,10...0,20% С) и низколегированные (Si, Мп, Сг и др.) стали (ГОСТ 19281—89 и 19282—72). Эти стали, как правило, обыкновенного качества и поставляются по механическим свойствам.  [c.170]

Последнее условие необходимо учитывать, если расчетная температура стенки превышает 420° С для углеродистых сталей, 470° С — для низколегированных сталей и 550° С — для сталей аустенитного класса. Для каждой марки стали возможны некоторые колебания величин пределов прочности, текучести и длительной прочности вследствие колебаний химического состава, режима термической обработки и по другим причинам. При выборе номинальных допускаемых напряжений предел текучести и предел прочности принимают равными минимальным значениям этих характеристик для стали одной марки.  [c.187]

Ударная вязкость углеродистых сталей при температурах ниже нуля резко снижается, сталь становится хрупкой. Одновременно наблюдается повышение предела прочности и предела текучести при снижении относительного удлинения и относительного поперечного сужения. Уменьшение этих характеристик происходит не так резко, как снижение ударной вязкости.  [c.235]

Разнообразные и многочисленные конструкции сварных сосудов, применяемых в современной промышленности, изготовляют преимущественно из мягких углеродистых или слаболегированных сталей. Эти стали обладают хорошей пластичностью и свариваемостью (газгольдеры, барабаны паровых котлов, хранилища для жидких продуктов, химические реакторы, баллоны, крупные газовые и нефтяные трубы и др.). Расчет сварных сосудов, как правило, ограничивают условиями статической прочности или сопротивлением однократным ударным нагрузкам. Для оценки прочности крупных ответственных сварных сосудов в последние годы учитывают также характеристики хрупкой прочности (критическая температура хрупкости, вязкость разрушения Ки) и ДР-Во многих случаях сварные конструкции типа сосудов давления подвергаются в процессе эксплуатации циклически меняющимся нагрузкам, что требует особых оценок их эксплуатационной прочности и долговечности. Наиболее полные и надежные данные о работоспособности сварных сосудов могут быть получены путем испытаний натурных конструкций или их моделей и элементов.  [c.199]

Определить запас прочности болта с метрической резьбой диаметром d=20 мм, если растягивающее усилие в нем изменяется от A mi =500 кГ до Л ах=1500 кГ. Внутренний диаметр болта di= 6,7S MM. Болт изготовлен из углеродистой стали с характеристиками Ств=40 кГ1мм , а =24 кГ1мм , а , =14 кГ1мм ,=0.  [c.247]

Большую группу стандартных деталей составляют кре-нежные резьбовые детали (болты, винты, гайки, шпильки). Все они изготовляются в соответствии с ГОСТ 1759 — 70 (СТ СЭВ (107 — 77, СТ СЭВ 1018 — 78), который ус1анавливает механические свойства крепежных деталей, виды и условное обозначе-f ие покрытий для них, допускаемые отклонения от геометрической формы и др. Для характеристики механических свойств f олтов, винтов, шпилек из углеродистых и легированных старей установлено 12 классов прочности, каждый из которых условно обозначается двумя числами, а именно 3.6 4.6 4.8 5.6 5,8 6.6 6.8 6.9 8.8 10.9 12.9 14.9.  [c.201]

Сравним жесткость, прочность и массу деталей, выполненных из углеродистых, легированных сталей и сплавов А1, М и Т1 (табл. 20). Характеристики деталей из углеродистых сталей приняты равными едивнме.  [c.213]

Так, результаты испытаний показали, что относительное удлинение образцов из углеродистой стали после выдермжи в течение 90 ч в водном растворе, содержащем 5 % Na l, 0,5 % СН3СООН и насыщенном HjS (pH = 3,5), в 5 раз ниже по сравнению с исходным, а число перегибов до разрушения снижается в 2,5 раза. Характеристики пластических свойств аналогичных стальных образцов, защищенных покрытием из ингибированной композиции ЛОМ, после выдержки в среде остались на уровне исходных образцов. Время до разрушения цилиндрических образцов без покрытия при напряжении, равном 0,8 от предела прочности на разрыв, составило 1,75 ч, а для образцов, покрытых ингибированной композицией, - 141 ч. При этом в 5,7 раза увеличивается время до разрушения  [c.174]


На величины q и влияет большое число факторов форма надреза, условия нагружения, размер образца, температура испытания, частота нагружения, размер зерна, характеристики прочности и пластичности данного металла и т. д. Поэтому указывают [2] лишь приближенные значения для некоторых групп материалов. Так, для чугуна и некоторых цветных металлов величина q близка к нулю для углеродистых сталей с временным сопротивлением до о-в= 000-7--Н1200 МН/м2 (100-,120кгс/ мм= ) величина q возрастает по мере увеличения временного сопротивления (рис. 64) [2].  [c.124]

Влияние облучения на изменение прочностных свойств нержавею-ш их сталей видно из данных табл. 5.5. Так же как в углеродистых и низколегированных сталях, имеются большие изменения предела текучести. Однако изменения предела прочности и пластичности в результате облучения значительно меньше, чем у углеродистых сталей. Во многих случаях отмечено падение пластичности меньше чем на 50% после облучения интегральным потоком 1 нейтронIсм . Некоторые результаты [33] указывают, что после облучения интегральным потоком 5-10 нейтрон 1см предел текучести нержавеюш ей стали тина 347 при комнатной температуре сравним с величиной предела текучести для меньших потоков, что указывает на достижение насыш ения в изменении этой характеристики. Подобное насыш ение или уменьшение скорости падения пластичности также наблюдается для этой стали.  [c.246]

Проектируя морское сооружение из низколегированной стали, конструктор, при заданной прочности мог бы взять меньшую толщину стенок, чем при использовании углеродистой стали. Однако при более высокой скорости коррозии это может привести к ускоренному разрушению конструкции. Таким образом, при проектировании, в принципе, следовало бы предусматривать больший допуск на коррозию низколегированных сталей, чем для углеродистой стали. В то же время при использовании подходящего защитного покрытия более высокие прочностные характеристики низколегированных сталей позволяют добпться общего выигрыша. Катодную защиту в случае низколегированных сталей следует применять с большой осторожностью, поскольку эти сплавы нередко более склонны к водородному охрупчиванию, чем углеродистая сталь.  [c.57]

По механическим характеристикам поковки подразделяются на категории прочности (КП). После букв КП ставится цифра, соответствующая пределу текучести металла в кгс/мм . При увеличении диаметра или толщины поковки требования к пластическим свойствам материала снижаются. Механические характеристики поковки из углеродистых и легированных сталей приведены в rO Tj8479—70. Чтобы обеспечить получение поковок с необходимыми механическими свойствами, следует выбрать соответствующую марку стали.  [c.26]

Сравнение прочностных и весовых характеристик детали, изготовленной из углеродистой и низколегированной сталей (416). Сравнение легированных, низколегированныхи углеродистых сталей по прочности и себестоимости (416). Экономия бронзы при использовании  [c.539]

Титановый сплав, обладая прочностью высоколегированной стали, почти в 2 раза легче ее (плотность 4,5). Поэтому, например, при изгибе в расчете на прочность при замене конструкционной углеродистой стали с Одоп = 1500 кГ/сл титановым сплавом Одоп = 400 кГ/сд 2 вес изготовленной конструкции уменьшается пропорционально отношению характеристик материала, т. е.  [c.456]

Отдельные характеристики стали ухудшаются не только при слишкоьм м.алом, но и при слишком большо.м содержании в ней добавляемых элеменлгов. Так, в углеродистой стали аличие чрезмерного количества угле1рода или марганца дополнительно увеличивает ее прочность, но при этом возрастает опасность появления непро-вара и трещин в сварных соединениях.  [c.19]

Статические нагрузки. Вследствие существенного различия в запасах прочности спроектированные в разных странах на одинаковые условия работы из материалов с близкими характеристиками прочности барабаны имеют разную толщину стенок. Расчеты показывают, что для барабанов из углеродистой стали с отношением пределов текучести и прочности около 0,5 расхождение толщины стенки, рассчитанной по нормам различных стран, не превышает 20%, в то время как для стали 16ГНМ с более высокими значениями предела текучести при рабочих температурах эта разница составляет более 50%. По нормам расчета на прочность [21 ] считалось, что оценка прочности по предельным нагрузкам, а не по наибольшим местным напряжениям, позволяет обеспечить надежность работы детали, изготовляемой из материалов с достаточно высокой пластичностью и работающей при стационарных нагрузках, при наличии местных пластических деформаций.  [c.12]

Расчетное допускаемое напряжение материала трубы при рабочей температуре 0, определяют умножением номинального допустимого напряжения Одоп на поправочный коэффициент т], учитывающий особенности конструкции и эксплуатации трубопровода. Для трубопроводов и поверхностей нагрева, находящихся под внутренним давлением, г) = 1. Номинальное допускаемое напряжение принимается по наименьшей из величин, определяемых гарантированными прочностными характеристиками металла при рабочих температурах с учетом коэффициентов запаса прочности для элементов, работающих при температурах, не вызывающих ползучесть, — по временному сопротивлению и пределу текучести Для элементов, работающих в условиях ползучести, у которых расчетная температура стенки превышает 425°С для углеродистых и низколегированных марганцовистых сталей, 475 С для низколегированных жаропрочных сталей и 540°С для сталей аустенитного класса, — по временному сопротивлению, пределу текучести и пределу длительной прочности. Расчет на прочность по пределу ползучести Нормами не предусматривается, так как соблюдение необходимого запаса по длительной прочности обеспечивает прочность и по условиям ползучести. В табл. 8-6 приведены значения номинальных допускаемых напряжений для некоторых сталей.  [c.148]

В некоторых сталях — углеродистых (при содержании более 0,4-0,5 % углерода) и легированных — в закаленном состоянии содержится повышенное количество остаточного аустенита — 3-12 %, а в быстрорежуш их — 35 % и более. Это объясняется тем, что температура конца мартенситного превраш,ения (М ) указанных сталей ниже О °С, а при закалке охлаждение производят только до комнатной температуры. Остаточный аустенит в закаленной стали снижает ее твердость и при постепенном самопроизвольном распаде вызывает изменение размеров изделий из этой стали. Закаленные стали, в структуре которых имеется остаточный аустенит, подвергают охлаждению до температур ниже нуля градусов. Такой процесс называют обработкой холодом. Под действием отрицательных температур остаточный аустенит превращается в мартенсит. Увеличение количества мартенсита способствует повышению твердости, улучшению магнитных характеристик стали, стабилизации размеров, повышению стойкости и усталостной прочности изделий из такой стали. Твердость после обработки холодом возрастает на 1-5 HR и более.  [c.204]



Смотреть страницы где упоминается термин Углеродистая Прочность — Характеристики : [c.557]    [c.557]    [c.11]    [c.53]    [c.175]    [c.296]    [c.16]    [c.126]    [c.79]    [c.30]    [c.351]    [c.87]    [c.409]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



Прочность алюминиевых сплавов механическая — Характеристика углеродистой стали механическая Характеристика

Прочность алюминиевых сплавов углеродистой стали механическая Характеристика

Р углеродистое

Сталь для арматуры углеродистая — Механическая прочность — Характеристика

Сталь жаропрочная Предел длительной углеродистая — Прочность механическая— Характеристики

Углеродистая Прочность длительная — Характеристики

Углеродистая сталь — Механическая прочность — Характеристика



© 2025 Mash-xxl.info Реклама на сайте