Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциальное течение (продолжение)

Потенциальное течение (продолжение). Полагая в уравнении (29) ds последовательно равным dx, dy и dz, мы найдем соотношения, связывающие составляющие скорости и, v, w с потенциалом скоростей Ф  [c.91]

Вихри и связанное с ними циркуляционное потенциальное течение возникают всегда в результате образования поверхностей раздела. Все потенциальные течения являются результатом давления, передаваемого на жидкость ограничивающей ее стенкой или находящимся внутри нее телом. Циркуляционное течение возникает главным образом в том случае, когда внутри жидкости имеется поверхность, одна часть которой испытывает некоторое время давление, а другая, соседняя, часть не подвергается давлению. Примером может служить образование вихревого кольца около отверстия в стенке (рис. 45) стенка испытывает давление слева и отвечает равным противодействием, в то время как отверстие не подвергается давлению. Другим важным примером является движение крыла самолета, когда площадь, находящаяся непосредственно под крылом, некоторое время нагружена весом самолета, а продолжение этой площади за пределами крыла не подвергается в это время никакому давлению. В конце 7 мы упомянули, что из поверхности раздела, возникающей позади крыла, образуются два вихря, сбегающие с концов крыла (см. рис. 46). Кроме того, в начальный момент движения, при разгоне крыла, образуется вихрь, изображенный на рис. 66. Этот начальный вихрь вместе с боковыми вихрями образует одну общую, обычно несколько размытую вихревую нить. Само  [c.112]


Предположим, что линия ветвления не является характеристикой. Тогда, проведя на первом листе плоскости годографа через произвольную точку А вблизи линии ветвления характеристики разных семейств (рис. 1.14), получим, что продолжения этих характеристик на другой лист плоскости годографа снова пересекутся в точке А совпадающей с точкой А в силу того, что образы характеристик потенциального течения лежат на эпициклоидах. Но в этом случае (так как отображение физической плоскости на риманову поверхность в плоскости годографа взаимно однозначно) и в физической плоскости две характеристики разных семейств, целиком расположенные в сверхзвуковой области, должны были бы пересечься в двух разных точках — прообразах точек А, А что невозможно.  [c.34]

Однако применение намеченного в общих чертах способа Блазиуса сильно ограничивается тем, что для тонких тел, особенно важных в практическом отношении, требуется брать очень большое число членов ряда,, больше, чем это возможно для составления таблиц с допустимой затратой времени. Причина этого заключается в следующем для тонких тел, например для эллипса, обтекаемого в направлении длинной оси, или для крылового профиля, скорость потенциального течения вблизи критической точки возрастает очень резко, а дальше, позади критической точки, она изменяется на большом участке профиля незначительно, приближенное же представление такого рода функции в виде степенного ряда с малым числом членов получается плохим. Тем не менее способ Блазиуса не теряет практической ценности для тонких тел. В самом деле, в тех случаях, когда сходимости ряда недостаточно, чтобы довести расчет по способу Блазиуса до точки отрыва, можно поступить следующим образом рассчитать по способу Блазиуса, т. е. аналитически и притом с большой точностью, только ближайший от критической точки участок пограничного слоя, а затем вести расчет дальше численно, например методом продолжения.  [c.162]

Когда говорят о нестационарном пограничном слое, то обычно имеют в виду либо пограничный слой, образующийся при возникновении движения из СОСТОЯНИЯ ПОКОЯ, либо пограничный СЛОЙ, возникающий при периодическом движении. При движении, возникающем из состояния покоя, тело и жидкость ДО определенного момента времени находятся в состоянии покоя, а затем либо тело начинает двигаться в покоящейся жидкости, либо жидкость начинает набегать на покоящееся тело. При таком разгоне тела или жидкости в непосредственной близости от стенки образуется сначала очень тонкий пограничный СЛОЙ, в котором скорость течения быстро изменяется от скорости тела до скорости внешнего течения. При разгоне тела в свободном потоке непосредственно после начала движения во всем пространстве, за исключением очень ТОНКОГО пограничного слоя около тела, возникает потенциальное течение, т. е. течение без вращения частиц. Затем, по мере продолжения разгона, толщина пограничного слоя увеличивается, в связи с чем встает важный вопрос об определении того момента времени, когда в пограничном слое впервые начинается возвратное течение, влекущее за собой отрыв пограничного слоя. В 1 главы V мы привели точные решения уравнений Навье — Стокса для двух нестационарных течений, а именно для течения вблизи стенки, внезапно начавшей двигаться в своей собственной плоскости, а также для течения в трубе, внезапно возникшего из состояния покоя. Оба эти случая могут служить примерами разгонного течения с образованием нестационарного пограничного слоя.  [c.378]


Изложенные в предыдущих параграфах способы расчета пограничного слоя при нестационарном движении позволяют проследить развитие течения только в продолжение очень небольшого промежутка времени после начала отрыва. В дальнейшем, когда отрыв уже произошел, течение вне пограничного слоя сильно изменяется, причем особенно сильно в случае тела с тупой кормовой частью, как, например, у круглого цилиндра. Это обстоятельство влечет за собой значительное отклонение действительного распределения давления от теоретического потенциального распределения, вследствие чего использование последнего распределения для продолжения расчета дает совершенно неверные результаты. Представление о действительной картине течения, возникающего позади круглого цилиндра после отрыва пограничного слоя, дает серия фотографий, изображенных на рис. 15.5. Первая фотографии (рис. 15.5, а) показывает, что в начальный момент разгона получается такая же картина линий тока, как при невязком потенциальном течении. Вторая фотография (рис. 15.5, б) снята в тот момент, когда в задней критической точке только что начался отрыв пограничного слоя. На третьей фотографии (рис. 15.5, в) точка отрыва уже успела переместиться далеко вверх по течению. Линия тока, отходящая от точки отрыва, окружает область, в которой скорости очень малы. Вихревая напряженность больше всего вне этой линии тока. Здесь образуется вихревой слой, который при дальнейшем развитии течения свертывается в два концентрированных вихря (рис. 15.5, г). В свободном течении позади этой пары вихрей, там,  [c.394]

Н. Е. Жуковский рассматривал установившиеся плоскопараллельные обтекания цилиндрического крыла бесконечного размаха поступательным набегающим потоком с постоянной скоростью. При решении плоской задачи о потенциальном обтекании несжимаемой жидкостью цилиндрического крыла можно найти в двусвязной области потенциального потока решение с циркуляцией, отличной от нуля по контуру, охватывающему крыло. Соответствующий потенциал оказывается многозначным. При непрерывном кинематическом продолжении рассматриваемого обтекания на всю плоскость в соответствии с теоремой Стокса внутри крыла получается вихревое течение.  [c.300]

Существенного успеха по сравнению с тем, что было достигнуто геометрическими методами, впервые добился Лежандр в мемуаре Исследования о прйтяжении однородных эллипсоидов , представленном Парижской академии в 1785 г. несомненно, работа была закончена на год или два года раньше. Лежандр справедливо указывает, что хотя Лагранж рассмотрел задачу о притяжении во всей общности, но фактически провести интегрирование ему удалось только в тех случа ях, которые были уже исследованы Маклоре-ном. Лежандр доказывает новую важную теорему если известна сила притяжения телом вращения любой внешней точки на продолжении оси тела, то она известна для любого положения внешней точки. Это позволяет ему обобщить теорему Маклорена о софокусных эллипсоидах вращения (обобщение теоремы на случаи трехосных софокусных эллипсоидов позже удалось Лапласу). Лежандр впервые вводит в этом мемуаре разложение в ряд по полиномам, названным его именем (по сферическим функциям), и здесь же впервые появляется силовая (или потенциальная) функция, но с указанием, что эта идея принадлежит Лапласу. По оценке Тодхантера, ни один мемуар в истории рассматриваемого вопроса не может соперничать с этим мемуаром Лежандра. В течение сорока лет средства анализа, даже в руках Даламбера, Лагранжа и Лапласа, не продвинули теорию притяжения эллипсоидов дальше того рубежа, на который вышла геометрия Маклорена.... Лежандр обобщил главный результат этой геометрии... Введение и применение круговых функций начинает новую эру в математической физике.  [c.152]


Смотреть страницы где упоминается термин Потенциальное течение (продолжение) : [c.452]   
Смотреть главы в:

Гидроаэромеханика  -> Потенциальное течение (продолжение)



ПОИСК



Потенциальное течение

Продолжение Ф (г)



© 2025 Mash-xxl.info Реклама на сайте