Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Касательные напряжения при изгибе в балках тонкостенного сечения. Центр изгиба

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]


Как известно, открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка заделана так, что депланация сечения в заделке становится невозможной, то будет иметь место так называемое стесненное кручение, при котором в поперечном сечении возникают не только касательные, но и значительные нормальные напряжения. Поэтому желательно принимать меры, устраняющие кручение в балках прокатного профиля. Обычно по этой причине ставят симметричное сечение из двух швеллеров. Если же профиль один, а нагрузка значительна, то ее нужно выносить из главной плоскости так, чтобы она проходила через точку С (на рис. 313, б такое положение нагрузки показано пунктиром на рис. 313, г дан один из возможных вариантов конструктивного оформления вынесения нагрузки). В этом случае участок балки длиной х полностью уравновешивается силами Р, Q x) = P и моментом М х) = Рх кручения не будет. Поэтому точка С называется центром изгиба (иногда — центром жесткости). Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 313, б).  [c.340]

Построить эпюру касательных напряжений по сечению и вычислить с , и для балки тонкостенного уголкового профиля пролетом /=40 см, изгибаемой силой Р=2Ъ кГ, приложенной в центре изгиба сечения, в двух случаях 1) сила Ру=Р направлена вертикально и 2) сила направлена горизонтально. Размеры сечения 6=40 мм, t=2 мм. Указать положение центра изгиба.  [c.116]

Касательные напряжения при изгибе в балках тонкостенного сечения. Центр изгиба  [c.203]

В предыдущем разделе были получены формулы и описаны приемы для нахождения касательных напряжений в тонкостенных балках незамкнутого профиля. Воспользуемся теперь этими сведениями для определения положения центров сдвига для различных конкретных форм сечений. Сначала рассмотрим швеллерную балку (рис. 8.12, а), которая изгибается относительно оси г и на которую действует вертикальная поперечная сила Qy, параллельная оси у. Распределение касательных напряжений в швеллере показано на рис. 8.12, Ь. Для того чтобы найти напряжение %i в месте соединения полки со стенкой, используем формулу (8.18) при этом будет равно статическому моменту площади полки относительно оси z  [c.326]

Если сечение тонкостенной балки состоит из нескольких прямоугольников, оси которых пересекаются в одной точке (рис. 280), то центр изгиба совпадает с этой точкой, так как относительно нее сумма моментов касательных напряжений равна нулю  [c.278]


Определение положения центра изгиба представляет сложную задачу, так как требует, как уже указывалось, знания закона распределения касательных напряжений по сечению. Когда центр изгиба найден, нетрудно определить все усилия в сечении балки, которые, таким образом, сведутся в общем случае к N. Му, Мг, Qy, Qz и Ми. Тогда, используя результаты главы 7, най дем и величины напряжений, причем влиянием кручения на нор мальные напряжения оказывается возможным пренебречь. Есть однако, имеющие широкое практическое применение типы стерж ней, к которым выводы главы 7 оказываются неприменимыми К ним относятся так называемые тонкостенные стержни.  [c.293]

При изгибе тонкостенных стержней с открытым профилем принято считать, что касательные напряжения распределяются равномерно по толщине сечения б и направлены по касательным к средней линии. Если главные центральные оси сечения не являются осями симметрии, то при изгибе в плоскости главной оси балки 6 его поперечных сечениях возникают дополнительные касательные напряжения и балка наряду с изгибом закручивается. Чтобы исключить закручивание балки при изгибе, поперечная сила должна проходить не через центр тяжести, а через центр изгиба.  [c.229]

Построить эпюры распределения касательных напряжений по высоте стенки и ширине полок и определить положение центра изгиба несимметричного двутаврового сечения тонкостенной балки при следующих данных (см. рисунок) размеры сечения равны А=100лл, а = А мм, Ь = 60мм, мм, Ь — мм. Поперечная сила, приложенная в центре изгиба, Q= 1800 кг.  [c.141]

Для сечений типа двутавра при изгибе поперечными силами мы также будем иметь наличие горизонтальных касательных напряжений в поясах (фиг. 248). Однако благодаря симметрии сечения эти напряжения взаимно уравновешиваются в пределах каждой полки, и центр изгиба совпадает с центром тяжести сечения. Совпадение центра изгиба с центром тяжести сечения имеет место, если сечение имеет две оси симметрии или центр антисимметрии (зетобразная форма) в этом случае скручивание при действии нагрузки в плоскости, проходящей через ось стержня, исключено. Кроме того, из формул (15.18) и (15.19) следует, что скручивание балок при нагрузке их в главной плоскости, не являющейся плоскостью симметрии, связано с наличием в сечениях поперечной силы. Впрочем, для тонкостенных стержней несимметричного профиля (см. главу XXX) скручивание балк может возникнуть и при отсутствии поперечных сил.  [c.323]

Упомянутые авторы определяли центр изгиба как точку, через которую проходит равнодействующая касательных напряжений, при этом, конечно, кроме вертикальных касательных напряжений, учитывались и горизонтальные, возникающие в полках балки. Наиболее правильно задачу решил Майар. Эггеншвиллер же допустил ошибку. Он считал, что во всех случаях кручение тонкостенного профиля сопровождается появлением нормальных напряжений независимо от того, имеется ли и каково по величине препятствие искривлению сечения, поэтому по его вычислению напряжения получились втрое больше, чем по экспериментам Баха, что он объяснил неточностью проведения экспериментов. На самом же деле, как мы увидим ниже, качество проведения этих экспериментов было очень высокое.  [c.5]


Смотреть страницы где упоминается термин Касательные напряжения при изгибе в балках тонкостенного сечения. Центр изгиба : [c.106]    [c.169]    [c.338]   
Смотреть главы в:

Сопротивление материалов Изд.2  -> Касательные напряжения при изгибе в балках тонкостенного сечения. Центр изгиба



ПОИСК



35 том тонкостенные—Напряжения касательные при изгибе

I касательная

Балка сечения

Балка тонкостенная

Балки Напряжения

Балки в центре

Балки и изгиба с касательными напряжениями

Изгиб балок

Изгиб касательные напряжения

Касательное напряжение сечения

Касательные напряжения при изгибе. Центр изгиба

Касательные напряжения. Центр изгиба

Напряжение изгибающие

Напряжение касательное

Напряжение при изгибе

Напряжение сечения

Напряжения Напряжения изгиба

Напряжения Напряжения касательные

Напряжения, касательные в балках

Сечения Напряжения касательные при изгиб

Сечения Центр изгиба

Тонкостенные сечения

Центр изгиба

Центр изгиба балок

Центр изгиба балок сечением

Центр изгиба изгиба сечений

Центр сечения



© 2025 Mash-xxl.info Реклама на сайте