Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Осесимметричные сингулярные решения

Осесимметричные сингулярные решения  [c.151]

Фундаментальное сингулярное решение, обусловленное действием в точке Q осесимметричного источника интенсивности е, можно записать в виде (рис. 5.6)  [c.151]

Явный вид (5) решения осесимметричной задачи Лэмба позволяет представить ядро Л интегрального представления (12) в виде суммы регулярных и сингулярных слагаемых. Первое из них выражается через эллиптические и гиперэллиптические интегралы, а второе при г Ф р, гр Ф О имеет вид  [c.356]


Глава 2 посвящена решению осесимметричных контактных задач для цилиндрических тел конечных размеров канонической формы, когда штамп воздействует на плоскую или цилиндрическую части их границы. Для решения задач применяется метод сведения парных рядов-уравнений к БСЛАУ первого рода с сингулярной матрицей с последующей регуляризацией (п. 1.2.1) и метод однородных решений. Метод однородных решений позволяет свести задачи к решению БСЛАУ второго рода типа Пуанкаре-Коха с экспоненциально убывающими элементами матрицы и правой части и хорошо изученным ИУ для слоя с различными правыми частями. Как известно, решение таких бесконечных систем может быть получено при любых значениях параметров методом редукции.  [c.14]

Отметим, что в работах [13, 57] и др. также рассматривалась осесимметричная задача о кручении штампом кругового цилиндра конечных размеров (задача 4). Штамп жестко сцеплен с одной плоской гранью цилиндра, другая его плоская грань неподвижна, а на цилиндрической поверхности заданы условия отсутствия перемещ,ений или напряжений. Для исследования были использованы изложенные выше методы метод сведения парного ряда к БСЛАУ первого рода с сингулярной матрицей коэффициентов и метод однородных решений. Эти задачи имеют самостоятельный интерес и в то же время их можно рассматривать как модельные для проверки эффективности предложенных методов. Расчеты показали высокую эффективность предложенных методов и в совокупности позволили полностью их исследовать при всех значениях параметров.  [c.167]

Пусть В цилиндрической системе координат г,(р,г) задан цилиндр г К, г Ь из нелинейного упругого изотропного материала. Цилиндр предварительно подвергнут однородному осевому растяжению или сжатию и закреплен торцами между гладкими жесткими поверхностями таким образом, что отсутствуют нормальные перемещения и касательные напряжения. На описанную деформацию, которая считается конечной, накладывается малая осесимметричная деформация, вызванная внедрением в поверхность цилиндра при 2 а жесткого бандажа. Трение между цилиндром и бандажом отсутствует, а бандаж имеет радиус К-6, (5 > 0. В работе [47] для добавочной деформации получены линеаризованные уравнения и выписаны соответствующие граничные условия. Известным приемом полученная краевая задача была сведена к парному ряду-уравнению вида (33), в котором nQ = 0, К2 = К, а К(и) — известная функция [47]. Решение парного ряда, как и в предыдущей задаче, было получено путем сведения его к БСЛАУ первого рода с сингулярной матрицей. Был проведен расчет контактных напряжений и жесткости системы штамп — цилиндр Р для материала Муни. Анализ расчетов показывает, что с увеличением параметра предварительного напряжения в сторону растяжения жесткость Р увеличивается. Существует также такое сочетание геометрических параметров, при которых жесткость Р возрастает и с увеличением предварительного сжатия (с уменьшением Л при Л < 1).  [c.170]


В случае радиально неограниченного пространства описанная выше процедура становится несправедливой в силу появления сингулярностей. Поэтому используется другой подход [Leibovi h, 1970]. Предполагается, что завихренность сосредоточена в ядре вихря, а вдали от ядра течение потенциальное. Возмущения полагаются осесимметричными и длинными. Ищутся решения отдельно для внутренней и внешней областей с применением метода асимптотического сращивания и с соответствующими граничными условиями. В результате вьшедено интегро-дифференциальное уравнение  [c.235]

К. Е. Егоров (1960) применил сходную методику к случаю неосевого вдавливания штампа. В статье В. А. Пупырева и Я. С. Уфлянда (1960) и в монографии последнего (1967) дано решение общей смешанной задачи для упругого слоя, а также рассмотрен случай сцепления слоя и основания. Существенно указать, что метод парных интегральных уравнений позволил эффективно рассмотреть и более сложную осесимметричную задачу о сжатии слоя двумя штампами различных радиусов (Ю. Н. Кузьмин и Я. С. Уфлянд, 1967). И. И. Ворович и Ю. А. Устинов (1959) получили сингулярное интегральное уравнение непосредственно для функции Ф (А,) и разработали приближенный метод его решения путем разложения в ряд по степеням а к. Аналогичный метод был применен Д. В. Грилицким к задаче о кручении многослойной среды при помощи сцепленного с ней штампа, а также к ряду сходных контактных задач. Метод парных интегральных уравнений позволил ряду авторов (см., например, Г. М. Валов, 1964  [c.37]


Смотреть страницы где упоминается термин Осесимметричные сингулярные решения : [c.698]    [c.51]    [c.168]    [c.230]   
Смотреть главы в:

Методы граничных элементов в прикладных науках  -> Осесимметричные сингулярные решения



ПОИСК



Осесимметричные решения

Сингулярность

Сингулярные решения



© 2025 Mash-xxl.info Реклама на сайте