Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вакуум-активная защита металлов при сварке

Окисляемость металла при сварке определяется химическими свойствами свариваемого материала. Чем химически активнее металл, тем больше его склонность к окислению н тем выше должно быть качество защиты при сварке. К наиболее активным металлам, легко окисляющимся при сварке, относятся титан, цирконий, ниобий, тантал, молибден, вольфрам. При их сварке необходимо защищать от взаимодействия с воздухом не только расплавленный металл, но и прилегающий к сварочной ванне основной металл и остывающий шов с наружной стороны. Наилучшее качество защиты обеспечивают высокий вакуум и инертный газ высокой чистоты.  [c.40]


Сварка электронным лучом в вакууме является одним из наиболее распространенных способов в СССР и за рубежом. Она обеспечивает не только хорошую защиту и получение чистого металла, но дает возможность осуществить концентрированный разогрев и сквозное проплавление. При этом термическое влияние на окружающую зону уменьщается. При сварке электронным лучом остаточные деформации значительно меньше, нежели при дуговом процессе. Этим способом сваривают активные, тугоплавкие металлы при большой производительности процесса, а также различные высокопрочные стали. Электронный луч сваривает керамику и разные сочетания сплавов. Однако требуется дальнейшая исследовательская и практическая работа.  [c.123]

Использование вакуума в качестве защиты при сварке дает возможность надежно защитить расплавленный металл при сварке активных и тугоплавких металлов и получить высокое качество металла шва.  [c.7]

Одной из характерных особенностей большинства цветных металлов является их высокая химическая активность, сродство к газам воздуха и склонность к окислению, что приводит к резкому ухудшению свойств сварных соединений, вызывает поры и трещины. Поэтому при сварке цветных металлов необходима более качественная защита (инертный газ, вакуум, специальные флюсы) по сравнению со сваркой черных металлов и более качественная подготовка под сварку.  [c.132]

При сварке титана и алюминия — металлов очень высокой химической активности — раскисление осаждением невозможно, поэтому их сварку осуществляют с внешней защитой от окружающей среды — в инертных газах, в вакууме или под флюсами, не содержащими кислородных соединений.  [c.330]

Технический титан и его низколегированные сплавы удовлетворительно свариваются в защитных инертных газах (аргоне, гелии) неплавящимся вольфрамовым электродом, плавящимся электродом в вакууме или под специальными бескислородными флюсами. Высокая активность титана с газами воздуха приводит при отсутствии защиты расплавленного металла к заметному газонасыщению и снижению пластичности, длительной прочности, коррозионной стойкости сварного соединения и увеличивается склонность к замедленному разрушению. Термический цикл сварки титана существенно отличается от такового при сварке стали потери энергии теплоотводом меньше, а продолжительность пребывания металла околошовной зоны в области высоких температур в два—три раза больше. В процессе сварки происходят сложные фазовые и структурные  [c.237]


Технологическая свариваемость металлов зависит от ряда факторов химической активности металлов, степени легирования, содержания примесей и структуры. Химически активные металлы обладают повышенной склонностью к окислению, поэтому при их сварке должна быть обеспечена высококачественная защита. К наиболее активным металлам относятся титан, цирконий, ниобий, тантал и молибден. При их сварке необходимо защищать от взаимодействия с воздухом не только расплавленный металл, но и прилегающий к сварочной ванне основной металл и остывающий шов с наружной и обратной стороны. Наименьшее окисление достигается при сварке в высоком вакууме (при остаточном давлении не выше 10 Па) и высокочистом инертном газе.  [c.54]

Установлено, что активное воздействие вакуумной защиты при сварке дает возможность освободиться от поверхностных загрязнений, адсорбированных газов и жидкостных пленок. Обычно после нагрева в вакууме поверхность металла в широкой зоне, прилегающей к свариваемым кромкам, становится блестящей.  [c.88]

Для получения качественных сварных соединений при сварке активных металлов необходима весьма надежная зашита места сварки от воздействия воздуха. Наиболее эффективной защитой является вакуум.  [c.256]

Так как наиболее совершенная защита шва от газов атмосферы достигается при электроннолучевой сварке в вакууме, этот метод наиболее эффективен для соединения химически активных тугоплавких металлов. Большое значение имеют также и другие преимущества данного метода и в первую очередь возможность получения узких зон расплавления и термического влияния и благодаря этому малых деформаций.  [c.676]

Основная проблема свариваемости титановых сплавов -. получение сварных соединений с хорошей пластичностью, зависящей от качества защиты и чувствительности металла к термическому циклу сварки. Заметное насыщение металла шва кислородом, азотом и водородом в процессе сварки происходит при температурах >350 °С. Это резко снижает пластичность и длительную прочность сварных конструкций. Поэтому зона сварки, ограниченная изотермой >350 °С, должна быть тщательно защищена от взаимодействия с воздухом, в среде инертных защитных газов (аргона или гелия) высокой чистоты под специальными флюсами, в вакууме. Сварка без защиты возможна при способах сварки давлением, когда благодаря высокой скорости процесса и вытеснению продуктов окисления при давлении (контактная сварка) или отсутствии высокого нагрева (ультразвуковая сварка) опасность активного взаимодействия металла в зоне сварки с воздухом сводится к минимуму.  [c.128]

Разновидностью сварки в защитных газах является сварка с контролируемой атмосферой (рис. 1-9). Сварка происходит в камере, где сначала создается вакуум, затем камера заполняется аргоном, гелием или смесью газов (создается контролируемая атмосфера). При этом обеспечивается более полная защита сварочной ванны. Этот метод применяют при дуговой сварке неплавящимся электродом химически активных металлов и сплавов автоматом, полуавтоматом или вручную. В некоторых случаях сварку в вакууме ведут без создания специальной атмосферы.  [c.20]

В отличие от металлов IV и V групп эти металлы не дают устойчивых гидридов. Водород в этих металлах образует твердые растворы внедрения и обладает большой подвижностью, десорбируясь при охлаждении, поэтому данные металлы не склонны к водородной хрупкости. Несмотря на меньшую, чем у металлов IV и V групп, активность, требуется более тщательная их защита (в связи с повышенной чувствительностью к примесям внедрения), достигаемая сваркой в высоком вакууме и инертных газах высокой чистоты.  [c.156]

Положительные результаты могут быть получены при использовании методов сварки давлением, а также барьерных слоев и вставок из третьего металла, не образующего при высоких температурах со свариваемыми материалами хрупких фаз. Особенностью титана и титановых сплавов является их высокая активность с атмосферным газом, что требует ведения процесса в условиях, обеспечивающих их защиту (инертные газы, вакуум, жидкие среды).  [c.192]


Стыковая сварка циркония, тантала, ниобия из-за высокой температуры плавления и активного взаимодействия с кислородом, азотом и частично водородом сопровождается растворением этих газов в металле и интенсивным горением расплавляемых частиц с появлением большого количества окислов в виде хлопьев и дыма. Эти металлы обычно сваривают стыковой сваркой в защитных камерах с нейтральным газом при отсосе образующихся окислов. При кратковременном нагреве ниобий и молибден можно сваривать без защиты. Сваривае.мость редких металлов зависит от способа их получения. Легко свариваются спеченные в вакууме, деформированные, отожженные мелкозернистые металлы.  [c.46]

Для г])уипы тугоплавких, химически активных металлов при-годнь[е методы сварки резко ограничены необходимостью очень тщательной защити зоны сварки от вредного действия окружающего воздуха. В этом случае применяют дуговую сварку в инертных газах с дополнительной защитой зоны сварки с помощью развитой системы пасадок, укрепляемых па горелке, и защитой обратной стороны Н1ва, либо используют камеры с контролируемой атмосфо])ой. Достаточно эффективна электронно-лучевая сварка в вакууме.  [c.341]

Наиболее распространенными методами сварки титановых сплавов являются аргонодуговая, электронно-лучевая, плазменная, автоматическая под слоем специальных бескислородных флюсов, электрошлаковая с применением этих же флюсов, контактная и термодиффузионная сварка в вакууме. Все эти методы обеспечивают хорошую защиту металла от взаимодействия с атмосферой. Повышенная активность титана по отношению к газам при температурах > 500 °С требует защиты не только расплавленного металла, но и той части шва, которая нагрета до высокой температуры. При аргонодуговой сварке это достигается при использовании хвостовика у сопла горелки, в который подается аргон, и специальных подкладок, позволяющих защитить аргоном обратную сторону шва. Более радикальным способом защиты является сварка в камерах с контролируемой атмосферой, когда деталь защищается равномерно со всех сторон. При электрошлаковой и автоматической сварке под флюсом нагретые участки сварш>1х соединений, не закрытые шлаком, защищают аргоном.  [c.513]

Общие сведения. С развитием новых отраслей техники тугоплавкие металлы и их сплавы благодаря высоким жаропрочности, коррозионной стойкости в ряде агрессивных сред и другим свойствам находят все более широкое применение. К тугоплавким металлам, использующимся для изготовления сварных конструкций, относятся металлы IV, V и VI групп периодической системы Менделеева ниобий, тантал, цирконий, ванадий, титан, молибден, вольфрам и др. Эти металлы и сплавы на их основе обладают рядом общих физико-химических и технологических свойств, основными из которых являются высокие температура плавления, химическая активность в жидком и твердом состоянии при повышенных температурах поотношению к атмосферным газам, чувствительность к термическому воздействию, склонность к охрупчиванию, к интенсивному росту зерна при нагреве выше температуры рекристаллизации. Пластичность сварных соединений тугоплавких металлов, как и самих металлов, в большей мере зависит от содержания примесей внедрения. Растворимость азота, углерода и водорода в тугоплавких металлах показана на рис. 1. Содержание примесей внедрения влияет на технологические свойства тугоплавких металлов и особенно на их свариваемость. Взаимодействие тугоплавких металлов с газами и образование окислов, гидридов и нитридов вызывают резкое охрупчивание металла. Главной задачей металлургии сварки химически активных тугоплавких металлов является обеспечение совершенной защиты металла и минимального содержания в нем вредных примесей. Применение диффузионной сварки в вакууме для соединения тугоплавких металлов и их сплавов является весьма перспективным, так как позволяет использовать наиболее совершенную защиту металла от газов и регулировать термодеформационный цикл сварки в благоприятных для металла пределах.  [c.150]

В некоторых областях новой техники применяют различные активные и тугоплавкие металлы цирконий, молибден, тантал и др. При обычных методах дуговой и контактной сварки их соединение затруднительно вследствие активного поглощения ими кислорода и азота воздуха. Необходимы новые формы защиты. Такой формой является вакуум 10 — 10 мм рт. ст. Одной из разновидностей вакуумной сварки является электронно-лучевая, разрабатываемая в объединенной лаборатории МВТУ-МЭИ под руководством д-р техн. наук проф. Н. А. Ольшанского и доц. канд. техн. наук В. М. Ямпольского.  [c.170]

Высокая химическая активность титана к газам (кислороду, азоту и водороду) при высоких температурах требует обеспечения надежной защиты от газов атмосферы не только металла сварочной ванны, но и основного металла, нагревающегося до температуры 400 °С и выше. Сварку необходимо производить в среде защитных газов (аргона, гелия) высокой чистоты, под специальными флюсами или в вакууме. При температурах нафева выше 350 С титан поглощает кислород с образованием поверхностного (альфированного) слоя высокой твердости Ti + О2 = Т10г. При нагреве до температур выше 550 С титан растворяет азот, химически взаимодействует с ним, образуя малопластичные фазы внедрения (нитриды)  [c.469]

Защита от кислорода и азота воздуха может быть осуществлена путем почти полного его удаления (до состояния достаточно высокого вакуума, например, при электроннолучевой сварке) либо путем оттеснения воздуха от реакционного сварочного пространства другими газами. Это обычно достигается направлением в зону сварки так называемых защитных газов. Если сварка выполняется в естественных условиях, при окружении воздуха, такое его оттеснение осуществляется направленной, достаточно мощной струей защитного газа. Эта струйная защита кроме требований к самому защитному газу должна отвечать еще и некоторым общим требованиям, таким как отсутствие замешивания внешней газовой среды в струю, достаточное оттеснение окружающего газа. Если химическая активность и возможность реагирования с расплавленным металлом определяются составом защитного газа, то надежность струйной защиты определяется рядом дугих параметров (сечение струи, начальная скорость истечения газа, его плотность и др.).  [c.209]



Смотреть страницы где упоминается термин Вакуум-активная защита металлов при сварке : [c.255]   
Смотреть главы в:

Новые методы сварки металлов и пластмасс  -> Вакуум-активная защита металлов при сварке



ПОИСК



Вакуум

Защита активная

Защита металлов

Сварка активных металлов

Сварка в вакууме

Сварка металла



© 2025 Mash-xxl.info Реклама на сайте