Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодная защита катодным легированием

Анодная защита катодным легированием  [c.12]

Анодная защита легированием обеспечивается наличием в составе сплава катодных добавок, имеющих более положительный электродный потенциал по отношению к основному металлу (Си, Ag, Pi, Ра).  [c.68]

Все эти три вида пассивных систем имеют значение для техники анодной защиты (см. раздел 20). При заданной среде кинетика катодной промежуточной реакции и тем самым наклон кривых типов I, II или III зависят также от материала. Путем легирования каталитически действующими элементами, например платиной, палладием, серебром и медью, стремятся достичь случая III. В принципе при этом речь идет о гальванической анодной защите с катодом, питаемым от постороннего источника [33].  [c.69]


Срок службы деталей при химическом изнашивании можно увеличить, используя легированные коррозионно-стойкие стали, применяя коррозионно-стойкие металлические и неметаллические защитные покрытия, в тйм числе пассивируя поверхности деталей, применяя электрохимическую защиту (катодную—минус на детали) или создавая пассивную анодную пленку (анодная защита—плюс на детали).  [c.265]

Первую группу методов защиты применяют на стадии изготовления металла, в процессе его термической и механической обработки. Разработка коррозионностойкого сплава — довольно сложный процесс, поскольку при этом приходится учитывать большое количество факторов, включая технологию изготовления сплавов, их литейные свойства, способность к свариванию и пр. Общую теорию коррозионностойкого легирования создал Н. Д. Томашов. Принципы легирования определяются природой металла-основы и условиями его эксплуатации. Повысить коррозионную стойкость сплава можно, влияя на три основных компонента, определяющих эффективность действия коррозионного элемента анодную поляризуемость, катодную поляризуемость, и омическое сопротивление.  [c.112]

Наиболее важны среди многочисленных способов защиты те, которые направлены на повышение торможения анодного процесса или, другими словами, способствуют поддержанию коррозионных систем в устойчивом пассивном состоянии. Создание коррозионностойких сплавов, например нержавеющих сталей, применение анодных ингибиторов и пассиваторов (как в виде добавок в коррозионные среды, так и в виде защитных полимерных пленок или смазок) также относятся к этому типу защиты. В последнее время защита анодным торможением коррозионного процесса еще дополнилась принципиально новым методом, катодным легированием сплавов и анодной поляризацией внешним током (анодная защита) или использованием катодных протекторов [10, с. ПО].  [c.31]

Легирование, повышающее пассивность введение в сплав катодных добавок или положительных катионов в раствор, понижающих перенапряжение катодному процессу введение окислителей или анодных ингибиторов в коррозионную -среду или защитное покрытие применение анодной электрохимической защиты  [c.11]


В настоящее время из литературы известны три основных пути повышения коррозионной устойчивости титана в более широком интервале концентраций кислоты и температур. Положительных результатов можно достигнуть легированием титаиа катодными присадками (в частности, палладием) [2, 3 ] введением в соляную (серную) кислоту как неорганических [4, 5], так и органических добавок окислителей-пассиваторов [6, 7 ], применением анодной электрохимической защиты от внешнего источника постоянного тока [8, 9].  [c.273]

Легирование стали значительным количеством хрома являются совершенным видом защиты в условиях, обеспечивающих устойчивое состояние пассивности (анодный контроль), но абсолютно бесполезно при работе конструкции в кислоте с неокисляющим анионом (катодный контроль).  [c.195]

К способам, снижающим термодинамическую активность металлов, относят их легирование, катодную (наложение внешнего тока) и анодную (пассивирование) защиты.  [c.159]

Анодная защита (перевод металла в пассивное состояние) может быть обеспечена изменением рсдокс-иотенциала коррозионной среды (ингибиторы окислительного типа), смещением потенциала в пассивную область анодной поляризацией или облегчением катодного процесса (катодное легирование).  [c.144]

Из многочисленных способов защиты, пожалуй, наиболее важны методы, повышающие торможение анодного процесса или, другими словами, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. К этим методам защиты относятся создание большинства коррозионноустойчивых сплавов, как, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и нассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки, или смазки). В последнее время методы защиты путем анодного торможения коррозионного процесса дополнились принципиально новыми предложениями катодным легированием сплавов и применением анодной поляризации внешним током или использованием катодных протекторов. Открытие этих методов было логическим следствием большого числа глубоко продуманных систематических исследований в области кинетики электрохимических процессов коррозии.  [c.10]

Повышение пассивируемости, а следовательно, и коррозионной устойчивости практических сплавов, помимо разработанного ранее катодного легирования и анодной электрохимической защиты, может быть в некоторых условиях осуществлено также и более простым методом — введением в коррозионную среду катионов электроположительных металлов. ]Иеханизм защитного действия подобных добавок может быть пояснен так. В коррозионных средах с добавками положительных катионов в качестве катодного деполяризующего процесса, помимо реакции выделения водорода  [c.169]

Защищаемый сплав в данных условиях и данной коррозионной среде должен переходить в устойчивое пассивное состояние. Таким образом, этот метод так же, как и рассматриваемые ранее методы катодного легирования и анодной электрохимической защиты, применимы главным образом для нержавеющих сталей (в отсутствие активирующих ионов галогенов в растворе), титановых сплавов и других легко пассивирующихся материалов. Однако, как будет разобрано ниже, в некоторых условиях, наиболее благоприятных в отношении установления пассивного состояния, он применим также для более трудно пассивирующихся сплавов, например низколегированных сталей.  [c.170]

Наиболее важными являются методы защиты, направленные на повышение торможения анодного процесса, иначе говоря, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. Создание большинства коррозионноустойчивых сплавов, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и пассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки или смазки) относятся к этим методам защиты. Защита с применением анодного торможения коррозионного процесса дополнена принципиально новыми методами катодным легированием сплавов [20] и анодной поляризацией внешними токами — анодная защита (С. Эделя-ну, В. М. Новаковский, А. И. Левин, И. Д. Томашов, Г. П.  [c.46]


Анодная защита в отличие от катодной применяется только в тех случаях, когда металл или сплав изделия легко переходит в пассивное состояние, которое должно сохраняться в окислительных средах. К легко пассивирующим металлам относятся хром, никель, титан, цирконий и другие и сплавы системы железо — цементит, содержащие эти металлы. Анодная защита осуществляется присоединением к конструкции положительного полюса источника постоянного тока (анода), а катоды помещаются около поверхности изделия. При анодной защите резко снижается скорость коррозии при минимальном расходе энергии, так как сила тока очень мала. Анодную защиту применяют для предохранения изделий, соприкасающихся с сильно агрессивной средой. Очень часто защищают изделия, изготовленные из титана, циркония, легированных сталей, например 10Х18Н9Т (рис. 31), углеродистых сталей. При таком методе увеличивается срок службы аппаратуры. Анодную защиту также часто используют с целью снижения загрязнений агрессивной среды продуктами коррозии.  [c.130]

Вид анодных поляризационных кривых сталей 1Х17Н2 и Х18Н9Т и характер пересечения их с катодными позволяют предположить, что в смеси уксусной и муравьиной кислот применение анодной защиты приведет к уменьшению скорости коррозии нержавеющих сталей с пониженным содержанием никеля, а это позволит применять их в этих условиях. Метод анодной защиты — поддержание металла в пассивном состоянии в условиях, в которых он обычно находится в активном состоянии, разработан и применяется в довольно ограниченном числе реагентов (фосфорная кислота, серная кислота, олеум, азотная кислота, едкий натр, гидрат окиси лития и сернокислый алюминий). Анодная защита позволяет в некоторых случаях применять малоуглеродистые и низколегированные стали взамен легированных.  [c.22]

Дрейли и Разер 2, 8] объясняют наблюдаемые факты тем, что выделяющийся на поверхности раздела металл—оксид газообразный водород разрушает защитную оксидную пленку. Если алюминий контактирует с более электроотрицательным металлом либо легирован никелем или железом, то можно предполагать, что ионы Н+ разряжаются на катодных участках, а не на алюминии, и оксидная пленка остается неповрежденной. Однако полезное действие катодных участков можно также объяснить [91 анодной пассивацией или катодной защитой алюминия. Это влияние сходно с действием легирующих добавок платины и палладия (или контакта с ними) на нержавеющую сталь аналогичным образом эти металлы пассивируют также титан в кислотах (см. разд. 5.4).  [c.344]

Первая группа методов защиты применяется еще на стадии производства металла в процессе его металлургической и механической обработки. При разработке коррозионно-устойчивых сплавов необходимо обеспечить и ряд других требований, как, например, литейные качества, возможность хорошей сварки и др. Общая теория легирования, преследующая цель повышения коррозионной устойчивости, создана Н. И. Томашо-вым. Она базируется на трех основных факторах, характеризующих эффективность действия коррозионного элемента,—катодной поляризуемости, анодной поляризуемости и омическом сопротивлении.  [c.33]

Излагаются термодинамические и кинетические предп<х ылк,и селективного растворения сплавов, а также закономерности протекания парциальных электрохимических реакций. Рассматриваются основные механизмы анодного растворения (равномерное, селективное, псевдоселектив-ное), приводится их соответствующее математическое описание. Обсуждается связь коррозионной стоййости сплавов с фазовой диаграммой состояния. Раскрывается физико-химический механизм предупреждений селективного растворения и коррозии путем легирования, использования ингибиторов и катодной защиты.  [c.2]

Вследствие легирования может происходить и- изменение закономерностей протекания парциальных анодных реак-ций-саморастворения сплавов. Так, в аэрированных хлорид-ных растворах для начального периода коррозии оловянис-той р-латуни характерно уменьшение скорости СР цинка и б лстрый (через 1—2 с) переход к одновременному окислению меди. Действительно, длительное СР цинка из нелегированной латуни приводит к задержке потенциала коррозии в области отрицательных значений. Этим фактически осуществляется катодная защита медной составляющей сплава. В случае же легированной латуни скорость СР цинка уменьшается настолько, что уже со второй секунды не превышает предельного тока восстановления кислорода, поэтому ее потенциал быстро принимает величину, близкую к стационарной [137].  [c.175]

При защите металлов от коррозии наиболее эффективен метод, который тормозит основную контролирующую стадию данного электрохимического процесса, т. е. когда основной фактор защиты данного метода совпадает с контролирующим фактором данного коррозионного процесса. При одновременном применении нескольких методов защиты металла от коррозии, как привило, легче достичь более полной защиты, если все эти методы действуют преимущественно на основную контролирующую стадию электрохимического коррозионного процесса. Например, при уменьшении коррозии металла добавлением анодных ингибиторов (пассиваторов) усиление эффекта защиты достигается также введением катодных присадок в сплав или дополнительной анодной поляризацией, т. е. рядом методов, тормозящих анодный процесс. Наоборот, одновременное применение нескольких методов, действующих на различные контролирующие стадии электрохимической коррозии, будет, как правило, менее эффективным, а иногда и вредным. Например, если ограничение коррозии металла достигнуто методами, тормозящими анодный процесс (легирование стали хромом, добавкой окислителей или анодных ингибиторов в раствор), то нерационально одновременно применять методы, тормозящие катодный процесс (устранение катодных включений в сплаве, уменьше-  [c.48]


Следует заключить, что не существует единого пути создания коррозионностойкого сплава, как не существует и металлического сплава, устойчивого в любых условиях. В зависимости от условий коррозии пути подбора и создания коррозионностойких сплавов будут весьма сильно видоизменяться. Легирование стали значительным количеством хрома (переход к хромистым сталям) является созершенным методом защиты в условиях работы сплава в пассивном состоянии (анодный контроль), но будет совершенно бесполезным при работе коя-струкдии в неокислительной кислоте (НС1, H2SO4), где протекает коррозия этих сталей с катодным контролем. Легирование титана большим количеством (до 32%) молибдена повышает устойчивость сплава в солянокислых растворах, но будет вредно, если в этих растворах присутствуют окислители и кислород наоборот, в этих средах более положительный эффект будет получен от модифицирования титана ничтожными присадками (0,2—0,5%) палладия. Может быть приведено большое число подобных примеров. Общей ориентировкой может служить такое правило. Изменение состава сплава следует производить в том направлении, чтобы в предполагаемых условиях эксплуатации достигалось дальнейшее повышение основного контролирующего фактора коррозии. Например, если основной металл в данных условиях не склонен к пассивации п корродирует в активном состоянии с выделением водорода, то следует изыскивать методы изменения состава и структуры поверхности сплава, вызывающие повышение катодного контроля, например повышение перенапряжения водорода, снижение поверхности активных катодов. Для условий, в которых возможна пассивация основы сплава, наибольший эффект будет получен от добавления в сплав присадок, повышающих пассивируемость основы или повышающих эффективность катодного процесса.  [c.21]

Легирование стали высоким процентом хрома (переход к хромистым сталям) является совершенным методом защиты в условиях, обеспечивающих устойчивое состояние пассивности (анодный контроль), но бесполезно при работе конструкции в неокислительной кислоте (НС1, H.2SO4), где протекает коррозия с катодным контролем.  [c.16]


Смотреть страницы где упоминается термин Анодная защита катодным легированием : [c.374]    [c.68]    [c.4]    [c.260]    [c.186]    [c.358]    [c.20]    [c.196]    [c.153]   
Смотреть главы в:

Анодная защита металлов от коррозии  -> Анодная защита катодным легированием



ПОИСК



V катодная

Анодная защита

Анодный

Катодная защита

Катодное легирование

Легирование



© 2025 Mash-xxl.info Реклама на сайте