Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хромоникелевые стали с азотом

Глава XIX ХРОМОНИКЕЛЕВЫЕ СТАЛИ С АЗОТОМ Структура и свойства  [c.323]

Хромомарганцевоникелевые стали с азотом и хромоникелевые стали типа 18-8 обладают при высоких температурах примерно одинаковыми механическими свойствами. Для специальных целей получили применение стали этого класса с повышенным содержанием азота (0,5 и 0,8%).  [c.33]

Наличие марганца в сталях этого типа увеличивает растворимость азота в аустените, что позволяет получить достаточно стабильный аустенит при меньшем содержании никеля [376, 377]. Азот, внедряясь в решетку аустенита, способствует его упрочнению, поэтому хромомарганцевоникелевые стали с азотом имеют несколько более высокие механические свойства, чем хромоникелевые стали типа 18-8.  [c.440]


Механические свойства хромомарганцевоникелевых сталей с азотом зависят от структуры и содержания марганца (рис. 259) [377]. Стали с повышенным содержанием азота (0,23%) имеют повышенную прочность при пониженной пластичности. Повышение содержания марганца в хромоникелевой стали 17-4-N несколько увеличивает ударную вязкость при температурах глубокого холода. С понижением температуры испытания ударная вязкость хромомарганцевоникелевых сталей уменьшается.  [c.440]

Хромомарганцевоникелевые стали с азотом и хромоникелевые стали типа 18-8 обладают при высоких температурах примерно одинаковыми механическими свойствами (рис. 262) [753].  [c.442]

Рис. 335. Влияние 2-ч нагрева при 550—760° С на коррозионную стойкость хромомарганцевоникелевых сталей с азотом и различным содержанием углерода и хромоникелевой стали типа 18-8 с 0,036% С Рис. 335. Влияние 2-ч нагрева при 550—760° С на <a href="/info/33965">коррозионную стойкость</a> <a href="/info/58988">хромомарганцевоникелевых сталей</a> с азотом и различным содержанием углерода и <a href="/info/36275">хромоникелевой стали</a> типа 18-8 с 0,036% С
Хромомарганцевоникелевые стали с азотом и аустенитные хромоникелевые стали типа 18-8 при высоких температурах имеют примерно одинаковые механические свойства.  [c.1367]

Аустенитные хромоникелевые стали обладают высокой коррозионной стойкостью как при комнатной, так и при повышенных температурах. Обычно они имеют высокую вязкость, которая сохраняется при низких температурах. Многие стали, используемые в химической промышленности, разработаны на основе классической хромоникелевой стали с 18% Сг и 8% N1. Коррозионная стойкость в кислотах, не содержащих кислорода, может быть повышена легированием медью и молибденом. В сталях, обладающих прочностью при высокой температуре и в основном используемых для деталей тепловых установок, содержится 16% Сг и 13% N1. Чтобы повысить устойчивость этих сталей против ползучести, их легируют кобальтом, молибденом, вольфрамом, титаном, ниобием, танталом, ванадием, азотом и бором. При легировании кремнием, алюминием, а также при увеличении содержания хрома повышается окалиностойкость теплоустойчивых сталей. При дальнейшем увеличении содержания никеля повышается жаропрочность за счет более высокой стабильности аустенита. В этой группе хромоникелевых сталей заслуживает внимания сталь с 25% Сг и 20% N1 (сталь № 196, ф. 444/3, 4).  [c.44]


В таблицу включены не только хромоникелевые стали, в том числе и с дополнительным легированием, но и такие,, в которых марганец и азот частично и даже полностью заменяют никель (в последнем случае они, разумеется, не являются хромоникелевыми сталями).  [c.487]

При выборе стали следует учитывать количество титана или ниобия, связываемых как углеродом, так и азотом. После нормальных режимов термической обработки (закалка с 1050° С) для кратковременных нагревов необходимо, чтобы отношение Ti к С было не меиее 5-кратного и Nb к С не менее 10-кратного. Для длительной службы изделий при 500—750° С важно, чтобы эти отношения были не менее 7—10-кратного для Ti и 12-кратного для Nb. Снижение содержания С в хромоникелевых сталях типа 18-8 с Ti или Nb до 0,03 или в крайнем случае до 0,05% (максимум) является наиболее правильным решением данного вопроса.  [c.146]

Хромоникелевые стали после закалки на аустенит обладают высокими пластическими свойствами. С ростом содержания углерода (и азота ) повышаются механические свойства хромоникелевых сталей как в закаленном, так и в состаренном состоянии. При этом чем выше температура закалки сталей (950—1150° С), тем меньше их прочность и твердость и выше пластичность. При холодной деформации в зависимости от степени обжатия происходит значительный рост предела прочности, текучести и твердости, пластические свойства снижаются, но сохраняются па достаточно высоком уровне. При холодной деформации происходит также изменение магнитных свойств, связанных с превращением аустенита, особенно у низкоуглеродистой стали.  [c.27]

Однако такого же состава сталь, но выплавленная в условиях поглощения азота, имеет чисто аустенитную структуру. Это обстоятельство показывает, что тройная диаграмма сплавов Fe—Сг—Ni только в первом приближении характеризует истинное структурное состояние технических хромоникелевых аусте-нитных сталей типа 18-8. Что касается сталей с более высоким содержанием хрома и никеля, относящихся к этой же группе  [c.29]

Рис. 111. Растворимость азота в хромистой и хромоникелевой стали при 1600° С в зависимости от содержания хрома (цифры у кривых — содержание никеля в стали, %) Рис. 111. Растворимость азота в хромистой и <a href="/info/36275">хромоникелевой стали</a> при 1600° С в зависимости от содержания хрома (цифры у кривых — содержание никеля в стали, %)
По механическим свойствам стали с 23 и 25% Сг и высоким содержанием азота после закалки при 1100—1200° С приближаются к хромоникелевым сталям типа 18-8. Сталь с 23% Сг, 1 % Ni и 0,25% N имела аустенито-ферритную структуру и следую-194  [c.194]

Алюминий и титан играют двоякую роль с одной стороны, они связывают углерод и азот в карбиды и нитриды, уводя этим самым из твердого раствора сильные аустенитообразующие элементы. Это, сообщает хромоникелевой стали 17-7 способность к превращению С другой стороны, избыток алюминия и титана, не связанных в карбиды и нитриды, способствует образованию интерметаллидных фаз при умеренных температурах и дополнительному упрочнению за счет дисперсионного твердения. Предполагается, что дисперсионное твердение развивается преимущественно в ферритной фазе, имеющей меньшую растворимость фаз по сравнению с аустенитной. Поэтому наибольшее упрочнение достигается в том случае, когда сталь имеет достаточное количество мартенсита.  [c.246]

Увеличение содержания углерода и азота повышает механические свойства хромоникелевых сталей как в закаленном, так и в состаренном состоянии. При этом чем выше температура закалки (950—1150° С) сталей, тем меньше их прочность и твердость и выше пластичность.  [c.304]

Присадка азота к хромоникелевой стали типа 18-8 повышает устойчивость аустенита при холодной деформации, при этом предел прочности ( tj) у стали типа 18-8 с азотом с изменением степени холодной деформации лежит ниже, чем у стали типа 18-8 без азота.  [c.323]

В результате исследований [270, 271 ] возможности использования азота как заменителя никеля при выплавке сталей с Bif.i-соким содержанием хрома предложена хромоникелевая сталь типа 18-5 с азотом (0,15—0,25%), обладающая повышенным пределом текучести по сравнению со сталью типа 18-8 и такой же чувствительностью к межкристаллитной коррозии, как и сталь типа 18-8. В кипящей азотной кислоте эта сталь показала высокое сопротивление коррозии. В другой работе [272] изучалась возможность замены никеля азотом в хромоникелевой стали типа 23-12 с тем, чтобы сделать ее полноценным заменителем хромоникелевой стали типа 25-20 с 1,5% Si. Азот вводили в эту сталь в количестве 0,21—0,29%, Установлено, что после ЮО-ч выдержки при 900° С ударная вязкость стали резко снизилась вследствие образования новой фазы.  [c.325]


А. А. Бабаков [268 ] изучал серии хромоникелевых и хромомарганцевоникелевых сталей с добавками азота и установил, что  [c.326]

Присадка азота к хромоникелевым сталям повышает жаропрочные свойства хромоникелевых сталей, что видно из сопоставления данных различных исследователей [266, 267, 280]. В главе о длительной прочности стали типа 18-8 указано, что при температуре испытания 538° С длительная прочность увеличивалась с повышением содержания азота (см. табл. 124). Как уже указывалось, действие углерода и азота примерно одинаково, поэтому в таблице приведены данные по влиянию суммы азот + углерод на длительную прочность. С увеличением содержания суммы азот + углерод (более 0,12%) длительная прочность увеличивалась [280].  [c.327]

Влияние малых содержаний углерода и азота на склонность к межкристаллитной коррозии хромоникелевых аустенитных сталей с 16—25% Сг, 7—25% N4, 1,25% Мп и 0,40% Si после нескольких вариантов термической обработки подробно изучалось Биндером [477]. Образцы в" виде ленты толщиной I мм после нагрева в течение 10 мин при 1075° С и охлаждения на воздухе подвергали вторичному нагреву по следующим режимам  [c.525]

Некоторые из исследователей [480] объясняют это тем, что титан, обладая большим химическим сродством к азоту, всегда присутствующему в сталя в тех или иных количествах, в первую очередь соединяется с ним, образуя нитриды. Поэтому для полного устранения склонности к межкристаллитной коррозии стали следует учитывать содержание в ней азота и углерода. Содержание азота в хромоникелевых сталях, выплавленных в электродуговых печах, колеблется в пределах 0,010—0,024%, а в отдельных плавках 0,030—0,070%. Согласно имеющимся данным, только часть азота, присутствующего в стали, вступает в реакцию с титаном.  [c.547]

Хромомарганцевоникелевые стали типа 17-6-4, 17-8-5 с азотом вполне эквивалентны по коррозионной стойкости хромоникелевым сталям в условиях производства и хранения органических кислот, эфиров, альдегидов, кетонов, фенола и т. п.  [c.596]

Иное наблюдается при более высоких температурах, когда азот становится более активным. Например, хромистые, типа Х25 и хромоникелевые стали типа 15-35, 25-20, 18-25, весьма инертные к поглощению азота при умеренных температурах, при нагревании выше 1000° С поглощают азот, который в них образует нитриды (рис. 364). Нитриды крайне нежелательны для нагревательных  [c.666]

Эффективность образования аустенитной или ферритной структуры под действием легирующих элементов сплава определяется следующими положениями. Увеличение содержания хрома, титана, кремния, алюминия и молибдена способствует образованию ферритной фазы, а увеличение содержания никеля, марганца, углерода и азота расширяет область существования аустенита и повышает его устойчивость. Поэтому для получения стали с неустойчивым аустенитом необходимо учитывать влияние каждого элемента, входящего в ее состав. Решение этой задачи требует проведения большой экспериментальной работы, вследствие чего в настоящее время разработано очень мало марок сталей с высокой сопротивляемостью гидроэрозии. В хромоникелевых сталях при длительном нагреве до температур 700—900° С или медленном охлаждении от 900—950° С образуется интерметаллид-ная о-фаза. Эта составляющая выделяется преимущественно по границам зерен, сообщая этим сталям исключительно высокую хрупкость и снижая их эрозионную стойкость. Однако а-фаза может вызвать и повышение сопротивляемости микроударному разрушению, если она имеет высокую степень дисперсности. В последнее время установлено, что а-фаза образуется почти во всех хромоникелевых аустенитных сталях, в том числе с присадкой молибдена и других легирующих элементов. При аусте-низации хромоникелевые стали нагревали до более высоких температур (1000—1050° С), при которых хрупкая а-фаза растворяется.  [c.208]

В работе [752 ] автор изучал прочностные характеристики и ударную вязкость другой серии хромоникелевых и хромомарганцевоникелевых сталей с азотом. По его рекомендации стали типа Х18Н6, Х20Н6 и Х18Н4Г9 могут найти применение как маломагнитные высоко прочные материалы.  [c.326]

Аустенитные хромоншельмарганцевые стали с азотом. Применение хромоникелевых аустенит-ных сталей в криогенной технике из-за повышенного содержания никеля не всегда экономически оправдано. Вследствие низких значений предела текучести при 20 °С увеличивается металлоемкость конструкций. Более дешевые хромомарганцевые стали недостаточно надежны при динамическом нагружении в криогенных условиях.  [c.613]

К элементам, оказывающим аустенизирующее действие на структуру хромоникелевых сталей, кроме азота, относятся также С, Мп, Си —элементы, расширяющие область утвердого раствора в сплавах железа (аустенизаторы).  [c.20]

С целью экономии дефицитного никеля часть его может быть заменена марганцем или азотом. При этом Структура стали может сохраниться аустенитной либо перейти в аустенитно-ферритный или аустенитно-мартенситный класс. Экономнолегированные хромоникелевые стали по коррозионной стойкости не уступают сталям типа 18—8 и могут полноценно их заменять.  [c.32]

Вредные примеси (сера и фосфор) и растворенные газы (азот и кислород) повышают порог хладноломкости. Однако наибольшее влияние на ударную вязкость стали при минусовых температурах оказывает химический состав. Хорошо сохраняют ударную вязкость в области низких температур стали, легированные 5—6 % никеля. Аустенит-ные хромоникелевые стали и сплавы на никелевой осново весьма пластичны в области очень низких температур. Поэтому ГОСТ 5632—72 допускает, например, поковки из сталей 04Х18Н10 и 08Х18Н12Б к применению в сосудах, работающих под давлением до температуры —269 °С.  [c.207]

Необходимо иметь в виду, что способы повышения стойкости хромомарганцевых и хромомарганцевоникелевых аустенитных сталей с N к МКК несколько иные, чем хромоникелевых сталей типа Х18Н10. Поскольку Ti химически более активен к N, чем к С, его введение в сталь в качестве стабилизирующего С элемента неприемлемо, так как азот оказывается связанным с Ti в нитрид TiN и утрачивает свою функцию как аустенитообразующий элемент.  [c.41]


Чем выше содержание азота в хромоникелевой стали, тем меньше требуется никеля, чтобы сделать сталь полностью аусте-нитной. Например, 18%-ная хромистая сталь, содержащая около 0,15% N и 0,10% С, будет полностью аустенитной, если к ней добавить 5,5% Ni, а в 25%-ную хромистую сталь без азота надо ввести около 14% Ni.  [c.323]

Необходимые количества этих металлов для устранения МКК значительно превосходят те количества, которые можно рассчитать, исходя из соотношений металла к углероду в образующихся карбидах, так как часть их расходуется на образование нитридов, а часть растворяется в аустените. Аустенитная сталь 12Х18Н10Т может подвергаться МКК после отпуска при 500—800 °С при соотношении Ti С = 6—8, а в некоторых случаях, например, после длительного отпуска (до 5000 ч) при 500—600 °С и при более высоком (до 17). При обычном содержании азота в стали (<0,04 %) принимают следующие соотношения, % (вес) Ti С>5 Nb >ll Та С>20 [96]. Недостаток легирования ниобием аустенитных хромоникелевых сталей заключается в возмол<ности появления в них горячих трещин при сварке.  [c.105]


Смотреть страницы где упоминается термин Хромоникелевые стали с азотом : [c.326]    [c.354]    [c.217]    [c.314]    [c.30]    [c.277]    [c.70]    [c.152]    [c.231]    [c.325]    [c.479]    [c.357]    [c.359]    [c.482]    [c.525]   
Смотреть главы в:

Нержавеющие стали  -> Хромоникелевые стали с азотом



ПОИСК



Азот

Хромоникелевые

Хромоникелевые стали



© 2025 Mash-xxl.info Реклама на сайте