Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы термической и химико-термической обработки стали

В первой части учебника рассматриваются кристаллическое строение металлов, действие на их строение и свойства процессов кристаллизации, пластической деформации и рекристаллизации, фазы, образующиеся в сплавах, и диаграммы состояния двойных и тройных систем. Подробно освещены вопросы технологии термической и химико-термической обработки стали. Описаны конструкционные, инструментальные, нержавеющие и жаропрочные стали и сплавы на основе титана, меди, алюминия, магния и других металлов.  [c.2]


В первой части излагаются теоретические основы металловедения кристаллическое строение металлов, теория сплавов, железо-углеродистые сплавы, сталь и чугун, учение о пластической деформации и прочности, а также основы термической и химико-термической обработки.  [c.2]

Курс металловедения состоит из двух основных частей. В первой, общей части излагаются теоретические основы металловедения, кристаллическое строение металлов и теория сплавов, учение о пластической деформации и прочности металлов, диаграмма сплавов железа с углеродом, а такл<е основы термической и химико-термической обработки во второй, специальной части описаны конструкционные и инструментальные ста.чи, стали и сплавы с особыми физическими и химическими свойствами, цветные, подшипниковые и порошковые сплавы.  [c.7]

В последние годы были разработаны новые виды термической и химико-термической обработки стали, разработаны основы теории легирования, введены в эксплуатацию новые высокопрочные, коррозионно-стойкие, жаропрочные стали и сплавы, а также сплавы на основе алюминия, титана и т. д. Широко применяются в металлургии и технике редкие металлы и их сплавы.  [c.4]

Алюминиевые сплавы благодаря более высоким технологическим и потребительским свойствам, шире применяются в промышленности, чем чистый или технический алюминий. Преимуществами алюминиевых сплавов являются высокие значения прочности (а — до 600 МПа), удельной прочности (ад/р = 21), коррозионной стойкости, тепло- и электропроводности. Алюминиевые сплавы входят в группу легких сплавов (при одинаковой прочности изделия из алюминиевых сплавов в 3 раза легче стальных). Однако они уступают сплавам на железной основе по величине модуля упругости почти в 3 раза, малопригодны для упрочнения поверхностного слоя способами химико-термической обработки, и их твердость и износостойкость ниже, чем стали. Некоторые из них не обладают хорошей свариваемостью.  [c.213]

Кратко изложены, основы современного металловедения — теория сплавов, пластическая деформация, рекристаллизация, основы теории и практики термической и химико-термической обработки. Подробно рассматриваются конструкционные, инструментальные, нержавеющие стали, медные, алюминиевые, магниевые, титановые сплавы, пластические массы и другие неметаллические материалы.  [c.2]


Основные преимущества алюминиевых сплавов, определяющие область их применения — малая плотность (2,7—3,0 г/см ) при достаточно высоких механических свойствах. Однако они уступают сплавам на железной основе в величине модуля упругости 7 х X 10 кгс/мм у алюминия и 20 10 кгс/мм у сталей и чугунов. Кроме того, алюминиевые сплавы мало пригодны для упрочнения поверхностного слоя способами химико-термической обработки и их твердость и износостойкость ниже, чем стали. Некоторые из них,  [c.430]

В СССР газовая цементация впервые была внедрена на Московском автозаводе имени Сталина работниками завода при непосредственном участии и под руководством проф. С. К- Ильинского на основе работ проф. Н. А. Минкевича и проф. В. И. Просвирина. Процесс газовой цементации заключается в насыщении поверхностного слоя стали углеродом при нагреве деталей в атмосфере углеродсодержащих газов. Газовая цементация является освоенным процессом химико-термической обработки и получила широкое распространение на машиностроительных заводах как для серийного, так и для массового производства.  [c.244]

Сплавы на основе железа являются основными материалами для изготовления деталей машин, приборов, строительных конструкций и различного инструмента. Широкое применение сталей в машиностроении обусловлено сочетанием ценного комплекса их механических, физических, химических и других свойств. Свойства сталей зависят не только от их состава и соотношения компонентов, но и от вида термической и химико-термической обработки, которым они подвергаются.  [c.77]

Основы и назначение заключительной обработки (химико-термической обработки, отпуска после шлифования) инструментальных сталей.  [c.781]

Эксплуатационные свойства порошковых сталей могут быть улучшены не только объемным легированием с применением различных схем термической обработки, но и поверхностным легированием, в частности, химико-термической обработкой. Цементация - один из самых распространенных видов химико-термической обработки порошковых изделий на основе железа [66, 67].  [c.109]

Без знания этой диаграммы невозможно разобраться в процессах, происходящих при различных видах теплового воздействия на сплавы железо — углерод, назначать правильные режимы проведения различных технологических процессов. Диаграмма состояний сплавов железо — углерод нужна для установления правильных условий литья деталей и их последующей термической обработки, для назначения правильных режимов горячей деформации изделий (ковка, щтамповка, прокатка) и их последующей термической обработки, правильной технологии сварки и последующей термической обработки сварных изделий и т. д. Диаграмма состояний железо — углерод является основой для назначения рациональных режимов термической и химико-термической обработки стали и чугуна. Вследствие огромной теоретической и практической значимости диаграммы состояний железо—углерод она будет подробно рассмотрена на базе уже ранее изложенных основ теории сплавов.  [c.144]

Практика показывает, что углы наклона кривых усталости при изгибе, характеризующие сопротивление зубьев циклическим перегрузкам, изменяются в широких пределах в зависимости от режимов химико-термической или деформационной обработки. Значение показателя степени кривой усталости при расчете на изгибную выносливость для исследованных цементованных сталей составляет 2,2-13,9 [52]. Определение допускаемых напряжений необходимо проводить на основе характеристик кривых усталости или значений базовых пределов выносливости и показателей степени д для выбранных материалов с учетом коэффициентов КуИ Из зависимости (5.1) следует, что изменение допускаемых напряжений с учетом характеристик кривых усталости и упрочненного слоя можно определить на основе соотношения  [c.119]

Глава 11. Основы технологии химико-термической обработки стали (К5. м. Лахтин, И. С. Козловский)  [c.781]

Химико-термическая обработка стали ( ХТО ). Физические основы ХТО. Назначение и виды цементации. Механизм образования цементованного слоя и его свойства. Цементация в твердом карбюризаторе. Газовая цементация. Термическая обработка после цементации и свойства цементированных деталей.  [c.8]


Основными процессами поверхностного упрочнения деталей машин на машиностроительных заводах являются процессы химико-термической обработки, основой которых является изменение химического состава в поверхностных слоях путем диффузионного насыщения различными элементами при высоких температурах. В довоенный период на машиностроительных заводах превалирующими процессами химико-термической обработки были цементация твердым карбюризатором, жидкостное цианирование и азотирование. Цементации твердым карбюризатором подвергались детали машин и инструменты в печах периодического действия (камерных) и в печах непрерывного действия (толкательных с мазутным обогревом) на автомобильных, тракторных и самолетостроительных заводах применялся преимущественно древесноугольный твердый карбюризатор (ГОСТ 2407-51). Жидкое цианирование было наиболее распространено на Горьковском автозаводе, где в качестве цианизатора использовались соли с цианидом натрия или калия [81] на других заводах применялись соли с цианидом кальция. Азотированию подвергались преимущественно детали авиационных двигателей коленчатые валы из стали 18ХНВА, гильзы цилиндров из стали 38ХМЮА и др.  [c.149]

Большинство отечественных исследований MA отражает проблемы влияния химического состава сталей и параметров термообработки на механические свойства. Многие зарубежные разработки посвящены экономнолегированным порошковым сталям с улучшенными износостойкостью и прочностью. Для их производства используют частичнолегированные порошки с высокой уплотняемостью, после традиционных операций порошковой металлургии следует химико-термическая обработка (цементация) и закалка. Однако разработчики не уделяют внимания изучению возможности фазового перехода при различных видах контактного взаимодействия, что имеет принципиальное праетическое значение при внедрении рассматриваемых материалов. Вместе с тем уже в настоящее время созданы и внедрены в серийное производство низколегированные MA триботехнического назначения, а композиционные материалы на основе этих сталей имеют еще в несколько раз большую износостойкость.  [c.284]

В сердцевине нарушается желательная последовательность мартенситиого превращения в сердцевине и слое. При высокой концентрации углерода (>0,35%) в сердцевине мартепситная точка снижается, вследствие чего при закалке возможно вначале мартенситное превращение в слое, а затем в сердцевине, что приводит к уменьшению остаточных напряжений сжатия на поверхности, а следовательно, и к снижению усталостной прочности. Кроме того, с повышением концентрации углерода в сердцевине снижается вязкоеть цементованной стали. В связи с этим на основе результатов экспериментальных исследований в сталях для цементации рекомендуется содержание углерода не выше 0,30%, а оптимальные значения твердости сердцевины после химико-термической обработки должны находиться в пределах HR 29—43 [26].  [c.305]

Д. К. Чернов еще в 1868 г. открыл наличие фазовых превращений в стали при ее нагревании и установил при этом критические точки. Это открытие заложило основы современного металловедения и термической обработки стали. В 1878 г. он разработал теорию кристаллизации и строения стального слитка, сохранившую свое значение до наших дней. Н. С. Курнаков, основатель нового отдела общей химии — физико-химического анализа, широко применяемого в теоретической и прикладной химии, металлургии и т.д., создатель и руководитель большой школы советских химиков, сыграл выдающуюся роль в создании алюминиевой и магниевой промышленности в нашей стране. Г. В. Курдюмов открыл новый класс фазовых превращений в твердых телах — бездиф-фузионные превращения.  [c.335]


Смотреть страницы где упоминается термин Основы термической и химико-термической обработки стали : [c.58]    [c.215]    [c.115]    [c.387]    [c.33]    [c.367]   
Смотреть главы в:

Конструкционные и электротехнические материалы  -> Основы термической и химико-термической обработки стали

Справочник по слесарному и кузнечному делу  -> Основы термической и химико-термической обработки стали



ПОИСК



Основы теории химико-термической обработки стали

Основы термической обработки

Основы термической обработки стали

Основы химико-термической обработки

Стали—Обработка

ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛ

ТЕРМИЧЕСКАЯ ОБРАБОТКА Термическая обработка стали

Термическая и химико-термическая обработка

Термическая и химико-термическая обработка стали

Термическая стали

Химике-термическая обработка стали

Химико-термическая и термическая

Химико-термическая обработк

Химико-термическая обработка

Химико-термическая обработка стали



© 2025 Mash-xxl.info Реклама на сайте