Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение конечно-разностных уравнений в теории упругости

ПРИМЕНЕНИЕ КОНЕЧНО-РАЗНОСТНЫХ УРАВНЕНИЙ В ТЕОРИИ УПРУГОСТИ  [c.517]

При решении инженерно-геологических задач аргументами, зависящими от номера узлов, являются показатели деформационных свойств грунтов, действующие в этих узлах силы и перемещения. Записав в конечно-разностном вреде связь между силами и перемещениями для каждого узла, получим систему линейных алгебраических уравнений, решение которой приводит к отысканию перемещений узлов. Точность решения зависит от выбора сетки и способа решения системы. По найденным перемещениям определяют деформации и напряжения в узловых точках. Все зависимости при практическом использовании метода записываются в матричной форме. В большинстве случаев (как и в методе конечных элементов) они базируются на теории упругости, однако возможно применение и других зависимостей.  [c.52]


Предлагаемый перевод осуществлен с последнего американского издания 1970 г. Написанное еще в 1951 г. приложение к книге Применение конечно-разностных уравнений в теории упругости представляется теперь несколько неполным. Помимо него, в переводное издание включено приложение, посвященное методу конечных элементов. Оно написано переводчиком книги М. И. Рейтманом.  [c.11]

Системы уравнений, которые должны здесь рассматриваться, зачастую нелинейны (уравнения газовой динамики, гидродинамики, теории пластичности). Это требует при менения специальных приемов для расчета различных обобпденных решений (решений с разрывами разного типа), применения специальных разностных схем. Для прочност ных задач, опираюш ихся на уравнения теории упругости, в этом курсе должны быть рассмотрены широко используемые в настоящее время метод конечных элементов и метод граничных элементов. В принципе этот курс может быть разбит на две части гидродинамическую и прочностную.  [c.26]

В гл. 3 было показано, что задачи теории упругости допускают как дифференциальную формулировку, так и вариационную об отыскании таких функций, которые сообщают некоторому функционалу Э стационарное значение, когда вариация ЬЭ = 0. В связи с применением ЭВМ в решении сложных задач прикладной теории упругости в последние два-три десятилетия было установлено, что конечно-разностные аппроксимации во многих случаях предпочтительнее сочетать именно с вариационной постановкой задачи. Это позволяет удобно алгоритмизировать все этапы расчета, избежать вывода дифференциальных уравнений в сложных случаях, упрощает формула ровку граничных условий [1,5].  [c.247]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]



Смотреть страницы где упоминается термин Применение конечно-разностных уравнений в теории упругости : [c.517]   
Смотреть главы в:

Теория упругости  -> Применение конечно-разностных уравнений в теории упругости



ПОИСК



Теории Применение

Теории Уравнения

Теория упругости

Теория упругости — Уравнения Применение

Тон разностный

Упругость Теория — см Теория упругости

Уравнение конечное

Уравнения Уравнения упругости

Уравнения конечно-разностные

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте