Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образование голографического изображения

Образование голографического изображения  [c.10]

Обратная картина имеет место при интерференции встречных или почти встречных волн (0 180°), когда >./[2 sin як /4 и условие (65.1) выполняется с большим запасом. В таких расположениях дифрагировавшая волна соответствует брэгговскому отражению и следует ожидать образования только одного голографического изображения.  [c.263]

Голографическое изображение формируется с помощью когерентного света. Восстановленный волновой фронт может интерферировать с другой когерентной волной с образованием интерференционных полос. Если интерферирующие волны не очень сильно отличаются друг от друга, то возникает макроскопическая интерференционная картина, анализируя которую, можно получить информацию о различиях этих волновых поверхностей.  [c.154]


В 1960 г. мы экспериментировали с оптической голографией, повторяя прежде всего первоначальный эксперимент Габора. Хотя качество изображений по тем временам вряд ли было удовлетворительным с точки зрения стандартов обычной фотографии, тем не менее результаты были поразительные, поскольку казалось, что изображение получается из ничего. В оптической системе возникало изображение, образованное лучами света, которые могли идти вдоль системы по направлению к источнику, но только до невнятного кусочка фотопленки, называемого голограммой. Этот кусочек не содержал заметных деталей, соответствующих изображению, но лучи, формирующие изображение, внезапно здесь обрывались. Для несведущего в голографии процесс казался загадочным и необъяснимым. Этот голографический эксперимент нас буквально околдовал. Можно представить себе, сколь завороженными были Габор и его сотрудники, когда впервые наблюдали эти же явления  [c.18]

Интерес представляют лазеры с ламповой накачкой. Их оптические схемы подобны схеме твердотельного лазера. Активный элемент представляет собой трубчатую кювету из прозрачного в полосе накачки материала, через который прокачивается краситель. Накачка от импульсных ксеноновых ламп, которые вместе с кюветой помещены в диффузное или зеркальное устройство, подобное головке твердотельного лазера. Резонатор образован внешними зеркалами. Схема имеет элементы перестройки по длине волны генерации. Схема импульсного лазера типа ЛЖИ показана на рис, 28. Параметры импульсных лазеров приведены в табл. 5. Длина когерентности этих лазеров менее 2 мм, что делает их неприменимыми непосредственно для голографической съемки. Их можно использовать в системах воспроизведения изображений.  [c.53]

Кроме рассмотренной интерпретации голографической интерференции, существует еще метод рассмотрения, основанный на биениях пространственных частот. Голограмма представляет собой структуру, пространственная частота которой меняется от точки к точке. При наложении двух мало отличающихся друг от друга голограмм наблюдается явление, аналогичное тому, которое имеет место при сложении мало отличающихся временных частот с образованием биений. На голограмме с двойной экспозицией появляются области, где голографическая картина усилена, а также области, где она ослаблена или же полностью смазана. Первые области дают хорошее восстановление, тогда как вторые не реконструируют изображение. Таким образом, возникают интерференционные полосы.  [c.159]

В гл. 5 рассматривается процесс образования изображения при когерентном освещении как естественный предшественник голографии. В голографическом аспекте описаны метод филь-  [c.8]


Качественное описание двухступенчатого голографического принципа образования изображения было дано в гл. 1. С методом голографии мы встречались также в гл. 5 в связи с той важ-ной ролью, которую голография играет в системах оптической фильтрации и при синтезе оптических изображений.  [c.119]

В книге ведущих зарубежных специалистов в области голографической интерферометрии изложены принципы формирования изображения в голографии, особенности процесса образования интерференционной картины, а также измерения деформаций объекта по интерференционной картине. Рассмотрены характеристики частота, ориентация, видимость и область локализации интерференционных полос. Значительное место занимают рекомендации во применению голографической интерферометрии.  [c.4]

Необходимо также иметь в виду, что интерференционные и дифракционные явления играют принципиальную роль в теории голографии, теории образования изображений и новых методах голографической техники.  [c.8]

Рис. 6.2.4. Оптические системы голографических установок для записи (а) и восстановления изображений (б) в параллельных пучках и образование дифракционной решетки — голограммы (в) Рис. 6.2.4. <a href="/info/14569">Оптические системы</a> голографических установок для записи (а) и <a href="/info/175564">восстановления изображений</a> (б) в <a href="/info/737104">параллельных пучках</a> и образование <a href="/info/10099">дифракционной решетки</a> — голограммы (в)
Восстановление акустических голограмм. Как известно, классическая схема голографического процесса, например, в оптике, включает два этапа запись интерференционной картины, образованной предметным и опорным пучками на каком-либо квадратичном (реагирующем на интенсивность) приемнике излучения (фотопластинка, термопластик, жидкий кристалл) — создание голограммы, и считывание записанной интерференционной картины с помощью опорного пучка с целью получения видимого трехмерного изображения предмета — восстановление голограммы. В отличие от оптики, в акустике возможны и линейные приемники (например, микрофоны, пьезопреобразователи и т. п.), сохраняющие информацию как об амплитуде, так и о фазе волны. Поэтому в акустической голографии наряду с классической схемой записи и считывания возможен и другой способ голографирования — без спорного пучка [9, 10, 38—40]. Восстановление акустических голограмм при этом может осуществляться различными методами. В частности, широкие возможности открывает использование для этой цели быстродействующих ЭВМ.  [c.357]

Создание мощных источников монохроматического излучения — лазеров позволило использовать их для образования голографического изображения, в том числе и па дифракционной решетке. На затоговки наносится особый светочувствительный слой, который облучается двумя когерентными монохроматическими пучками. В результате интерференции этих пучков после соответствующей химической обработки на поверхности подложки остаются полосы, форма и расстояние между которыми определяются положением двух источников излучения относительно заготовки и длиной волны этих источников. Затем интерференционный слой покрывают слоем металла, в результате чего получается отражательная голографическая решетка, с которой могут быть изготовлены копии (реплики).  [c.375]

При передаче трехмерных голографических изображений возможно возникновение геометрических искажений в виде образования псевдоскопических изображений, когда элементы, наиболее  [c.264]

В этом приближении были выведены основные соотношения, определяющие и другие особенности радужного голографического изображения, при котором восстановленные изображения не имеют аберрации. На практике увеличение или уменьшение голографических изображений приводит к аберрации. Если возникает необходимость более летального исследования процесса образования изображения с учетом аберраций, то нужно включить члены более высокого порядка биномального разложения  [c.66]


Как установлено во многих работах [52-57], для оценки влияния трещиноватости на характеристики волн необходимо, чтобы физическая модель содержала множество трещин (аномалеобразующих объектов), имеющих размеры существенно меньше длины волны. В работе [57] для изучения в реальном времени процессов образования микротрещиноватости (при изменении напряженного состояния) и формирования сигналов упругих волн в зоне интенсивной трещиноватости предлагается использование оптико-голографических изображений. Подобные установки позволяют с большой достоверностью оценить влияние трещиноватости на волновое поле.  [c.43]

Голографический контроль корродирующих покрытий основан на фундаментальном принципе образования голографическо1 о изображения — принципе сходственных точек. Он заключается в следующем.  [c.111]

Принцип голографии, сформулированный в наиболее общем виде, предполагает, что источником опорной волны может быть предмет совершенно произвольной формы. Использование протяженной опорной волны, приводя к образованию сложной интерференционной картины, требует точного воспроизведения исходной конфигурации и на зтапе восстановления. Иными словами, в этом случае реконструкция возможна только при использовании волны, являющейся точной копией опорной [37, 102]. Даже незначительный сдвиг (порядка периода интерференционной картины) протяженного источника (см., например, [73 - 74]) приводит практически к полной потере изображения. В фурье4Х)лографии компенсация протяженности опорного источника [36] также осуществляется путем использования при восстановлении либо самого источника, либо его части. При этом допустимы только параллельные сдвиги восстанавливающего источника в пределах входной апертуры. Поэтому в практике голографического зксперимента используют опорные волны простой формы - плоские или - сферические, за исключением специальных случаев, когда стоит задача предельно затруднить процесс восстановления.  [c.31]

Первая ступень получения голограммы — это фотографическая запись интерференционной картины, образованной объектной волной в зоне дифракции Френеля и опорной волной. Вторая ступень — восстановление записанного на голограмме изображения объекта путем освещения голограммы репликой опорной волны. Восстановленное таким образом изображение обладает трехмерными свойствами исходного объекта, а его качество зависит от угла между опорной волной и волной, продифрагировавшей на объекте. Габор работал с осевыми голограммами ), для которых этот угол равен нулю (т, е. опорная и дифрагирующая волны являются соосными). При восстановлении голограмма Габора формирует два сопряженных изображения объекта и когерентный фоновый шум, которые локализуются вблизи оптической оси. Это обстоятельство приводит к существенному ухудшению качества восстановленного изображения из-за интерференции между интересующим нас сфокусированным изображением объекта и фоновым шумом, а также между этим шумом и расфокусированным сопряженным изображением объекта. Лейт и Упатниекс в своих экспериментах ввели внеосевую опорную волну, представляющую собой несущую волну, модулированную информацией об объекте. Эти голограммы также создают при восстановлении два сопряженных изображения и фоновый шум однако два восстановленных изображения, каждое из которых может быть сфокусировано отдельно в своей плоскости, оказываются пространственно разделенными по углу друг от друга и от осевого фонового шума. Благодаря этому получаются восстановленные изображения хорошего качества, причем никакой интерференции с другими распределениями света, порождаемыми голографическим процессом, не происходит.  [c.154]

Гл. 6 содержит теоретические и экспериментальные основы оптической голографии, которую Габор назвал методом образования изображения путем восстановления волнового фронта. Здесь рассматриваются проективная голография Френеля, без-линзовая голография Фурье с высоким пространственным разрешением и метод устранения эффекта протяженности источника с целью сохранения высокого пространственного разрешения по предмету. Затем излагается требование к когерентности света в голографии. В конце главы описан классический эксперимент Строука с голограммой, полученной при некогерентном освещении, и даны экспериментальные обоснования возможности применения голографических принципов для рентгеновских лучей.  [c.9]

I В этой главе мы более подробно рассмотрим голографические принципы образования изображения и опишем новые результаты (теоретические и экспериментальные), которые были недавно получены с участием автора в ходе разработок систем образования изображений и методов получения максимально возможного разрешения в тех диапазонах электромагнитного спектра, где такие системы невозможно осуш ествить иначе, как только с помощью голографии (например, в рентгеновских лучах). Мы можем сказать в самом обш ем виде, что те принципы голографии, которые рассматриваются в данной главе, составляют основу любых других голографических систем образования изображений и голографических методов преобразования изображений. Например, используя эти принципы, можно воссоздать трехмерное изображение предмета с помош ью голограммы, искусственно изготовленной по расчетным координатам предмета  [c.119]

Прежде чем перейти к рассмотрению собственно голографической интерферометрии, остановимся в гл. 2 на некоторых основных положениях дифференциальной геометрии и механики сплошных тел, а в гл. 3 — на принципах формирования изображения в голографии. В гл. 2 приводятся сведения, которые являются основой изложения всей книги. В гл. 3 рассматривается с одной стороны, получение исследуемых волновых фронтов, и, с другой стороны, детально. анализируются свойства изображения, в частности, аберрации, которые могут возникать, если оптическая схема, используемая при восстановлении, отлична от х ы регистрации. В этой же главе показано взаимопроникновение понятий механики и оптики. Затем в основной части книги — гл. 4 — исследуется процесс образования интерференционной картины, обусловленной суперпозицией волновых полей, соответствующих двум данным конфигурациям объекта, и обратная задача — измерение деформаций объекта по данной интерференционной картине. В ней, во-первых, показано, как определяют порядок полосы, т. е. оптическую разность хода интерферирующих лучей, и как отсюда находят вектор смещения. Во-вторых, рассмотрены некоторые характеристики интерференционных полос, их частота, ориентация, видность и область локализации, которые зависят от первых производных от оцтйческой разности хода. Затем показано изменение производной от смещения (т. е. относительной деформации и наклона). В-третьих, определено влияние изменений в схеме восстаноэле ния на вид интерференционной картины и методы измерения. Наконец в гл. 5 кратко приведены некоторые возможные примеры использования голографической интерферометрии для определения производных высших порядков от оптической разности хода в механике сплошных сред,  [c.9]


Голографический, или голограммный оптический, элемент преобразует волновой фронт как и оптическая деталь, т. е. фокусирует, отклоняет, расщепляет лучи. Однако в основе этих явлений лежит дифракция света на периодической или квази-периодической структурах. Эта структура формируется на основе тех принципов, которые уже были рассмотрены. Дифракционная структура голографического элемента получается в результате образования на высокоотражающем светочувствительном материале интерференционной картины от двух или большего числа когерентных волн. Голографические (дифракционные) элементы могут быть использованы как линзы, решетки, мультипликаторы и др. Они также применяются для фильтрации изображений и коррекции волнового фронта.  [c.410]

Голограмма записывает интерференционную картину, образованную комбинацией опорной волны и световых волн, исходящих от сцены. После того как фотопластинка с голографической записью проявлена, снова осветив ее лазв1ь ным светом, можно наблюдать восстановленное изображение первоначальной сцены. Изображение получается настолько правдоподобным, что у наблюдателя появляется желание приблизиться к нему и потрогать руками. Голограмма представляется нам похожей на окна, через которое мы видим снятую сцену во всей ее глубине. Наблюдатель может смотреть на сцену с равных сторон чтобы за-глянуть за предмет на переднем плане, нужно лишь повести головой или приподнять ее, тогда как в стереофотографии старого типа, использующей два стереоснимка, объемное изображение можно наблюдать лишь под одним углом зрения. В фотографии всегда применяются линзы.  [c.7]


Смотреть страницы где упоминается термин Образование голографического изображения : [c.169]    [c.86]    [c.44]    [c.305]    [c.94]   
Смотреть главы в:

Оптические голографические приборы  -> Образование голографического изображения



ПОИСК



Изображение голографическое

Образование изображения



© 2025 Mash-xxl.info Реклама на сайте