Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пограничный слой с абляцией

Турбулентная диффузия массы во внутреннем следе. Зная изменение коэффициента турбулентной диффузии Ej- ( ) вдоль оси следа, можно описать турбулентную диффузию отдельных химических компонентов во внутреннем следе с помош,ью подхода, аналогичного рассмотренному выше для суммарной статической энтальпии. Рассмотрим простейший случай, когда все диффундирующие компоненты содержатся во внутреннем следе рекомбинация или другие химические реакции, в которых участвуют эти компоненты, настолько медленнее диффузии, что ими можно пренебречь. Это случай введения инородного вещества в пограничный слой путем абляции. Как и энтальпия [уравнение (63)], массовая концентрация может быть задана в простейшем случае в двупараметрическом виде  [c.181]


В условиях входа космических аппаратов в атмосферу при гиперзвуковых скоростях абляция материалов является одним из способов уменьшения высоких тепловых потоков. При использовании таких материалов, как тефлон, твердое вещество сублимирует в окружающую среду с очень высокой энтальпией, и пограничный слой в этом случае подобен слою, образующемуся при охлаждении испарением с одновременно протекающей химической реакцией. Армированные пластики, например фенольная смола, армированная найлоном или вспененным полиуретаном, в этих условиях обугливаются. Обуглившийся слой образуется в процессе деполимеризации с выделением таких газов, как метан и водород.  [c.370]

Плавление и испарение кварца может сопровождаться диссоциацией. Нагреваемый твердый кварц размягчается и образует испаряющийся жидкий слой, из которого в газообразный пограничный слой поступает газообразная двуокись и окись углерода и кислород. В работе ]209] анализируется влияние массообмена и массовых сил на двухфазный пограничный слой. Существование жидкого слоя и процесс выброса капель определяются условиями распыла струй и капель (эти вопросы исследованы в работе [554] на основе работ [340, 787]). Абляция графита сопровождается реакциями горения и диссоциацией воздуха. Можно ожидать, что при температурах поверхности до 2800° С атомы азота диссоциированного воздуха будут рекомбинировать в газовой фазе. Простая модель для исследования системы С — О — N была использована в работе [682].  [c.371]

Дополнительные проблемы при оценке предельных свойств композитов появляются в связи с такими особенностями этих материалов, как неупругость поведения компонент, анизотропия армирующих волокон, разброс прочности компонент, наличие третьей фазы в виде пограничного слоя матрицы вблизи поверхности волокна. Следует учитывать также и специфику их применения — в авиационных конструкциях требуется нечувствительность к локальным разрушениям, в судостроении — стойкость к коррозии и кавитации, в возвращаемых космических кораблях—сопротивление абляции и уносу массы.  [c.38]

Анализ данных по теплообмену проводится с целью выявления влияния на пограничный слой, не содержащий продуктов абляции, различных процессов в потоке, таких, как неравновесные химические реакции и завихренность, вызванная скачком уплотнения. Чтобы выяснить, влияют ли процессы столкновения или диффузии на течение в пограничном слое, будет исследована химическая кинетика реакций диссоциации и рекомбинации для различных условий эксперимента. Затем определяется влияние каталитической поверхности на результаты. И наконец, полученные результаты сопоставляются с данными, полученными в ударных трубах и баллистических экспериментах при установившемся режиме течения. Они будут сопоставлены также с имеющимися теоретическими данными.  [c.378]


Отношение количества продуктов абляции в пограничном слое к компонентам ударной волны может быть определено с помощью уравнения (18). Это отношение определяется как  [c.392]

С ростом удельных тепловых потоков, подводимых к стенке, увеличивается ее температура. Последняя может достичь температуры плавления или сублимации материала стенки конструкции. Дальнейшее увеличение подводимого тепла будет вызывать плавление и испарение наружного слоя поверхности. При этом частицы и пары материала попадают в пограничный слой и отводятся набегающим потоком. Это явление абляции, или уноса материала с поверхности тела. Во время процесса уноса происходит как химическое взаимодействие материала с окружающей средой, так и механическая эрозия под воздействием набегающего потока и скалывание в результате больших термических напряжений. В процессе обгорания граница наружной поверхности перемещается внутрь тела.  [c.174]

В настоящее время с расчетами пограничного слоя в сжимаемых газах и несжимаемых жидкостях при наличии ионизации, абляции и химических реакций имеют дело конструкторы кораблей, самолетов, ракет и многих других машин и аппаратов, в которых существует движение жидкостей. Общее количество статей, посвященных исследованию пограничного слоя, исчисляется тысячами. Таким образом, пограничный слой, наверное, существует и известно его дифференциальное уравнение. Однако до тех пор никому не удалось строго доказать существование этого слоя из уравнений Навье—Стокса. Поэтому упомянутое уравнение ниже выводится двумя приближенными методами методом оценки порядка отдельных членов уравнения Навье—Стокса и методом масштабных преобразований.  [c.256]

Развитие аэротермохимии стимулировали проблемы, воз никающие в современной технике, в частности проблема тепловой защиты аппаратов, работающих при весьма высо ких температурах. Действительно, при входе летательных аппаратов в атмосферу температура за ударной волной на внешней границе пограничного слоя достигает 10 000 К н более. В этом случае эффективная тепловая защита может быть осуществлена только при условии частичного разрушения материала поверхности. Процесс абляции вещества теплозащитного покрытия оказывается весьма сложным. Этот процесс может быть связан с оплавлением и с испарением жидкой пленки, сублимацией, поверхностным горением, механической и тепловой эрозией обтекаемой поверхности. Строгая математическая постановка упомянутых задач приводит к необходимости решать нелинейные уравнения гиперзвукового пограничного слоя или вязкого ударного слоя с краевыми условиями на подвижных поверхностях, которых, вообще говоря, может быть несколько.  [c.3]

Настояш ее исследование, проведенное на трех установках с дуговым нагревом, было предпринято для определения влияния абляции тефлона на конвективный перенос тепла в высокотемпературном ламинарном пограничном слое при различных концентрациях атомов, молекул и ионов азота. Это достигается измерением конвективных тепловых потоков к неаблирующему калориметру и тепловых потоков в критической области аблирующей затуплен-Hoii осесимметричной модели, а также соответствуюш,им анализом баланса энергии.  [c.371]

Значения Сц рассчитанные по уравнению (5) для условий, указанных в табл. 2, изменяются от 10" для установки ASJ до 10" для установки EHS. Столь низкие значения, обусловленные низкими давлениями в критической области, малыми размерами модели и высокими температурами, гарантируют выполнение условия залюраживания пограничного слоя для всех условий эксперимента. Этот вывод согласуется со сделанным ранее выводом Рознера [19], который показал, что при течении в пограничном слое на моделях, испытанных в ударных трубах с дуговым нагревом при давлении, бликом к атмосферному, рекомбинации диффундирующих атомов в газовой фазе практически не происходит. Проблеме теплообмена в таких замороженных пограничных слоях были посвящены многие исследования [18, 20, 21]. В результате этих исследований установлено существенное каталитическое действие иоверхности при значениях С, < 10" . Например, если рекомбинация всех падающих атомов подавляется некаталитической поверхностью, то соответствующий тепловой поток может составить лишь половину теплового потока к полностью каталитической поверхности, па которой происходит восстановление всей энергии, переносимой за счет диффузии. Поскольку каталитическое действие поверхности учитывается в последующем анализе влияния абляции на нагрев, имеет смысл установить, действительно ли поверхности калориметров, использованных в настоящем исследовании, не были каталитическил1и.  [c.379]


В отношении влияния числа Рейнольдса Хошизаки [381 установил, что влияние массообмена на уменьшение конвективного нагрева изменялось при низких Re. Он исследовал обтекание сферы потоком с числом Льюиса, равным единице, и показал, что увеличение конвективного нагрева за счет завихренности более четко выражено при наличии массообмена. В результате отношение конвективных потоков при наличии и без массообмена (ijj) может быть втрое больше расчетного значения, соответствующего течениям с более высокими Re. В настоящем исследовании ограничивались значениями S <С 1,2. Помимо вопроса о влиянии завихренности, возникает также вопрос о течении в пограничном слое, отклоняющемся от режима континуума, и о том, как это влияет на тепло- и массообмен. В этих условиях охлаждение потока за счет поглощения теила парами, образующимися при абляции, будет ослаблено уменьшением числа столкновений. Хоув и Шеффер [37] указали также, что для моделирования профилей концентраций вдуваемых компонентов число Рейнольдса должно быть удвоено. В силу высказанных выше замечаний, а также ввиду того, что в окрестности конической носовой части космических кораблей при их входе в атмосферу возникает течение с очень низкими Re, необходимо детальное исследование влияния числа Рейнольдса на связь между переносом массы и энергии.  [c.386]

Рассмотрим решение, предложенное для таких больших скоростей массообмена. Либби [40], решив видоизмененную систему уравнений сохранения, установил, что поле течения можно разделить на две области изотермический слой скольжения, состоящий из вдуваемого газа, и внешнее течение в пограничном слое, состоящее из компонентов сжатого слоя между этими двумя областями имеется граница раздела. Катцен и Каатари [41] использовали подобную аналитическую модель для расчета увеличения расстояния отхода скачка, связанного с вдувом газов. Их расчеты хорошо согласуются с экспериментами, в которых производился вдув трех газов (воздуха, фреона-12 и гелия) в низкотемпературный сверхзвуковой поток. Однако теплообмен через изотермический слой был бы равен нулю, что привело бы к отсутствию абляции тефлона. Следовательно, вопрос касается применения этой двухслойной модели к проведенным экснериментам, в которых происходит мас-сообмен с окружающей средой. В этой связи полученные результаты интересно сравнить с данными эксперимента с вдувом, полученными в исследованиях, где параметр В мог регулироваться независимо от нагрева со стороны окружающей среды.  [c.387]

Вопрос о тепловой защите поверхностей тел, движущихся с гиперзвуковыми скоростями в плотных слоях атмосферы вызвал также появление обширной литературы. В настоящее время уже имеются хорошо разработанные методы расчета ламинарного и турбулентного пограничного слоя при вводе сквозь проницаемую поверхность тела охлаждающего поверхность дополнительного газа, отличного по своим физическим и химическим свойствам от газа, обтекающего тело (Ю. В. Лапин, В. П. Мотулевич, В. П. Мугалев, В. Г. Дорренс, Ф. Дор, Д. Б. Сполдинг). Изучены также вопросы разрушения (абляции) в гиперзвуковых потоках твердых поверхностей, их плавления или непосредственного испарения (сублимации) в зависимости от условий обтекания. Наиболее эффективным методом теплозащиты поверхностей в гиперзвуковых потоках является применение разнообразных покрытий, теория разрушения которых требует рассмотрения сложных систем уравнений динамического, температурного и диффузионного пограничных слоев в смеси газов и, кроме того, уравнений теплопроводности в самом твердом покрытии (В. С. Авдуевский, Н. А. Анфимов, С. В. Иорданский, Г. И. Петров, Ю. В. Полел<аев, Г. А. Тирский,  [c.42]

В соответствии с гипотезой Бертрама и Уиггса большое влияние на абляцию оказывает рельеф поверхности материала [9]. Авторы предположили, что при искажении обтекаемой газом поверхности максимальный тепловой поток является функцией местного числа Маха и толщины пограничного слоя. В результате проверенных экспериментов для различных чисел Маха (до 10 М) и толщин пограничного слоя при оценке влияния искажений в виде ступеньки, синусоидального выступа и выпукло-вогнутой волны найдена эмпирическая зависимость  [c.54]

Механизм абляции, помимо испарения и сублимации с поверхности материала, включает в себя чисто эрозионный износ (от механического воздействия газового потока и находящихся в нем твердых частиц несгоревшего топлива при истечении газов из сопловых устройств, или метеорной пыли и микротел при обтекании поверхности летательного аппарата, входящего в зе.м-ную атмосферу), а таклсе пиролиз с сопутствующим ему процессом вдувания образующихся в результате эндотермических реакций газов через поры аблирующего материала. Отмеченное прохождение газов на разрушаемую поверхность пр1 водит к созданию более толстого и плотного пограничного слоя,  [c.81]

Первые системы (с поглощением) могут включагь методы, связанные с использованием внутренней теплоемкости конструкций (примеиение таких материалов, как бериллий и его окислы, графит, керамика) методы теплозащиты за счет конвекции хладоагента (воды, водорода, гелия, лития и других жидких металлов) методы, использующие вдувание газов через пористые стенки и позволяющие регулировать пограничный слой газового потока, и, наконец, методы защиты путем уноса массы вещества (абляция).  [c.207]


Смотреть страницы где упоминается термин Пограничный слой с абляцией : [c.390]    [c.391]    [c.391]    [c.10]    [c.34]    [c.53]    [c.55]   
Смотреть главы в:

Гидродинамика многофазных систем  -> Пограничный слой с абляцией



ПОИСК



Абляция

Пограничный слой, влияние абляци



© 2025 Mash-xxl.info Реклама на сайте