Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покой

При увеличении силы тока до значения /дц напряжение источника становится меньше, чем напряжение дуги, а разность f/ — уменьшается и принимает отрицательное значение, в результате чего начинает уменьшаться сила тока /д до тех нор, пока не достигнет точки а, т. е. при режиме сварки, соответствуюш ем точке а, вследствие действия э. д. с. самоиндукции происходит саморегулирование режима горения дуги, точка а определяет устойчивое состояние системы источник питания — сварочная дуга.  [c.126]


Последним этапом расчета любой конструкции на прочность, жесткость и устойчивость является определение ее надежности и сравнение с нормативной. Если надежность конструкции равна нормативной или приемлемо больше нее - расчет закончен. Если же надежность конструкции меньше нормативной, то необходимо менять размеры и делать пересчет до тех пор, пока надежность конструкции не станет допустимой. Поэтому удобна такая методика расчета конструкций, по которой требуемая надежность заранее закладывается в проектируемую конструкцию. В данной главе приводится методика расчета упругих конструкций зара-  [c.4]

Переходят к построению планов скоростей и ускорений следующей присоединенной группы Ассура и так продолжают до тех пор, пока не будут построены планы скоростей и ускорений всех групп механизма.  [c.44]

Г. Рассмотрим основные закономерности, характеризующие явление трения скольжения несмазанных тел. Пусть тело, вео которого равен G, находится в покое на наклонной плоскости (рис. 11.3), имеющей угол наклона а к горизонту. Если обозначить нормальную реакцию наклонной плоскости через F", а силу, возникающую вследствие трения и направленную параллельно плоскости, — через то для равновесия тела (влиянием опрокидывающего момента пренебрегаем) необходимо, чтобы удовлетворялись равенства  [c.214]

Наблюдения показывают, что равновесие возможно, пока у гол а не превышает некоторого предельного значения ф и пока имеет) место неравенство  [c.214]

Трение, имеющее место при относительном покое соприкасающихся тел, называется трением покоя или статическим трением.  [c.215]

Если тело находится в покое, то реакция F отклонена от нормали п п на угол, не превышающий фп", при этом угол ф больше угла ф (рис. 11.8).  [c.220]

Если, наоборот, мы поднимем муфту N, то грузы будут расходиться и центры грузов займут некоторое новое положение, определяемое расстоянием > Хц. Если после этого мы предоставим регулятор самому себе, то он окажется под действием силы F i, величина которой определится ординатой d b", большей ординаты d" ", соответствующей величине центробежной силы F ,2, и, следовательно, грузы начнут сближаться, пока не вернутся в равновесное положение, соответствующее точке с.  [c.407]

Теперь проверим, будет ли предполагаемая комбинация кинематика — реологическое соотношение реализуемой (или динамически возможной), т. е. будет ли удовлетворяться динамическое уравнение. Если ответ утвердительный, то процедура проверки допускает также вычисление неопределенного (пока) давления. В обш их чертах это будет обсуждено в разд. 5-1.  [c.84]

Действительно, рассмотрим классическое уравнение механической теории простых жидкостей, т. е. уравнение (4-3.12). Пока не сформулированы гипотезы гладкости для функционала невозможно определить, будет ли скачкообразная деформация (и, следовательно, бесконечно большая мгновенная скорость деформации) соответствовать конечному или же бесконечному мгновенному значению мгновенного напряжения. Если сформулированы гипотезы гладкости, такие, как обсуждавшиеся в разд. 4-4, то это неявно предполагает, что скачкообразные приращения деформации и напряжения соответствуют друг другу, т, е, что возможны бесконечные значения мгновенной скорости деформации.  [c.243]


СОСТОЯНИЯ ). Следовательно, до тех пор пока желательно сохранять определенную степень общности, нужно ограничиться предположением, что имеем дело с классом материалов, характеризуемых одним и тем же безразмерным функционалом . Далее такие материалы будем называть гомологичными. Оставшаяся часть раздела ограничена анализом, применимым по отдельности к каждому из классов гомологичных материалов (разумеется, все ньютоновские жидкости гомологичны).  [c.266]

Здесь желательно обсудить один очень простой предельный случай. Рассмотрим полубесконечный массив жидкости, находящийся в покое, ограниченный при = О (выбрана декартова система координат) плоской твердой поверхностью.  [c.294]

При изготовлении же деталей на станках с программным управлением сначала составляют программу по чертежу. Отметим, что чертежи деталей, предназначенных для обработки на станках с программным управлением, пока мало отличаются от обычных, поскольку конструктор составляет их независимо от технологического процесса изготовления деталей.  [c.37]

В условиях сварки при коротком замыкании э. д. с. геаератора снижается до минимальных значений, равных падению напряжения в короткозамкнутой сварочной цепи, т. е. Е . = /и з/ г- Поэтому необходидю, чтобы при размыкании сварочной цепи э. д. с. генератора весьма быстро возросла до значений, достаточных для возбуждения дуги, пока металл остается достаточно нагретым после короткого замыкания для существования эмиссии электронов.  [c.127]

При замыкании щупа на металл через ОУ протекает ток, величина которого определяется положением движка потенциометра R1, и сварочный аппарат перемещается вверх, пока напряжение со щупа не скомпенсирует напряжение с R1. Вентиль В препятствует реверсированию электродвигателя ДВД, что привело бы к выливанию шлаковой ванны. Такая система устойчиво работает с аппаратом А-372Р и обеспечивает точность поддержания уровня 2 мм.  [c.156]

Так, отделяется группа второго класса, и причем такая, чтобы после ее отделения остался механизм с той же степенью, подвижности, что и заданный. Если отделить ipynny Ассура второго класса не представляется возможным (так как ее отделение приводит к тому, что оставшаяся часть механизма имеет степень подвижности w, превышающую единицу), то следует попытаться отделить группу Ассура более высокого класса. Для отделения второй, третьей и т. д. групп следует поступать таким же образом, как и при отделении первой группы Ассура. Разложение механизма на группы Ассура ведется до тех пор, пока не останутся ведущее (ведущие) звено и стойка.  [c.21]

Проводится силовой расчет каждой группы Ассура в отдельности, так как группа Ассура является статически определимой системой. Расчет следует начинать с группы Ассура, присоединенной к механизму при его образовании в последнюю очередь затем перейти к следующей группе и так до тех пор, пока не будетпроизведен силовой расчет всех групп, образовавших ведомую часть механизма.  [c.104]

Определяем с помощью рычага Х<уковского приведенную силу. Для этого переносим найденную инерционную нагрузку в соответствующие точки плана скоро тей (рис. 88, б). Кроме того, к точке Ь плана прикладываем пока неизвестную гриведенную силу инерции Р перпендикулярно к линии АВ (к линии рЬ). Записываем равенство между суммой моментов от инерционной нагрузки и моменте и от приведенной силы инерции относительно начала р плана скоростей. Из этэго равенства находим модуль приведеннбй силы инерции Р,,  [c.153]

Рис. 4.4. Схрма кулисного механи.зма с двумя поступателг.яыми парами и пока.- а иными на ней центрами мгновенного вращения Рис. 4.4. Схрма кулисного механи.зма с двумя поступателг.яыми парами и пока.- а иными на ней <a href="/info/284139">центрами мгновенного</a> вращения
Покай<ем теперь, как определить центр кривизны р траектории какой-либо точки D звена ВС (рис. 4.29, а), если построены его план скоростей (рис. 4.29, б) и план ускорений (рис. 4 29, в). Центр кривизны лежит на прямой Dn, проведенной через точку D (рис. 4.29, а) перпендикулярно к вектору скорости v,j, т. е. перпендикулярно. к отрезку (pd) плана скоростей (рис. 4.29, б). Прямая Dn является нормалью к траектории описываемой точки D в рассматриваемом положении этой точки и проходит через центр мгновенного вращения Р звена ВС. Вектор полного ускорения Oq точки D представлен на плане ускорений в виде отрезка (nd) (рис. 4.29, в). Разложим вектор по направлениям Dn и перпендикулярному к нему. Составляющая, направленная по Dn, будет нормальным ускорением Лд точки D. Имеем  [c.102]


Поворачиваем далее звено 2 в направлении угловой скорости (О = — fOi на угол ф1 . Тогда точка Ki займет положение К2, а точка —положение В1. Перемещаем далее звено 2 в направляющих Сдотех пор, пока точка В не коснется профиля кулачка 1. Если за начальное положение точки В звена 2 было принято положение В , то во втором положении точка В займет положение В . Пусть S2 — путь, пройденный звеном 2 при переходе из положения 1 в положение 2, равен  [c.131]

Из этих неравенств следует, что если механизм, удовлетворяющий указанному условию, находится в покое, то действительного движения механизма произойти не может. Это явление носит самоторможения механизма. Если же механизм находится в движении, то под действием сил непроизводственных сопротивлений он постепенно будет замедлять свой ход, пока не остано-  [c.309]

Рассмотрим, далее, в тех же масштабах характеристику регулятора, т. е. его зависимость fni = Р п W (рис. 20.9, кри-. вая Ь — h). Точка с пересечения прямой От с характеристикой Ь — Ь регулятора определяет то положение Хц центра груза, при котором регулятор находится в равновесном положении при постоянной угловой скорости сор, так как в этом положении равны по величине и противоположны по направлению силы F i л FI,2. Пусть, далее, регулятор выведен из своего равновесного положения, например, опусканием муфты при этом центры грузов сблизятся и будут находиться от оси вращения регулятора на расстоянии Xj < Xf,. Если после этого мы предоставим регулятор самому себе, то он окажется под действием центробежггой силы величина которой определится ординатой d , большей ординаты d b, соответствующей величине силы Под действием избыточных центробежных сил грузы будут расходиться, пока не вернутся в равновесное положение, соответствуюш,ее точке с.  [c.407]

Угол поворота 2фо звена 1, при котором кресг 2 находите в покое, равен  [c.510]

На рис. 26.1,6 пока.зам второй вид - улячкового механизма. Кулачок 1 вращается с заданной угловой скоростью Действуя на ролик о, кулачок 1 заставляет звено  [c.511]

Если щуп (а следовательно, п золотник) передвинется влево, то оба трубопровода, ведущие к управляемому цилиндру, откроются. По левому трубопроводу масло иод давлением будет поступать в левую полость управляемого цилиндра, и стол вместе с фрезой начнет двигаться влево. По правому трубопроводу масло из правой полости будет сливаться в бак. Стол будет двигаться до тех пор, пока золотник снова не перекроет оба канала. Точно так же при движении щупа, а вместе с ним и золотника вправо стол вместе с ([jpesoii будет двигаться вправо и вновь остановится, когда золотник за1 мет среднее положснне.  [c.584]

Рассмотрим теперь одну задачу, которую можно решить, не приписывая функционалу какой-либо специальной формы, а именно гидростатическую задачу. Рассмотрим простую жидкость, которая находится и находилась всегда в состоянии покся, так что  [c.143]

Из этого следует вывод, что напряжение в простоц жидкости, которая всегда находилась в покое, изотропно., И обратно, простая жидкость не может неограниченно долго поддерживать неизотропное напряженное состояние без того, чтобы в конце концов не потечь [4]. Этот вывод свидетельствует о том, что теории пластичности (описывающие жидкости, обладающие предельным напряжением текучести) не являются частными случаями теории простых жидкостей.  [c.144]

Точка зрения, выраженная в вышеприведенном утверждении Олдройда, заслуживает подробного обсуждения. Во-первых, можно неограниченно долго дебатировать вопрос о том, что ближе к природе доступных нам экспериментальных методик — предположение, что деформация определяется историей напряжений или же наоборот. Обсуждать это было бы бесполезным, поскольку эти две точки зрения эквивалентны до тех пор, пока не сформулированы гипотезы гладкости.  [c.243]


Смотреть страницы где упоминается термин Покой : [c.38]    [c.68]    [c.126]    [c.148]    [c.387]    [c.95]    [c.45]    [c.46]    [c.49]    [c.49]    [c.50]    [c.159]    [c.66]    [c.108]    [c.221]    [c.250]    [c.507]    [c.549]    [c.591]    [c.601]    [c.70]    [c.231]   
Теоретическая механика (1970) -- [ c.372 ]

Аналитическая динамика (1999) -- [ c.47 ]



ПОИСК



АБСОЛЮТНЫЙ И ОТНОСИТЕЛЬНЫЙ ПОКОЙ (РАВНОВЕСИЕ) ЖИДКИХ СРЕД

Движение типа «кажущийся покой

ЖИДКОСТИ Покой относительный

Закон покоят

Кажущийся покой

Механизмы передвижения с i покой гяюй

Относительный покой жидкости поступательное и вращательное движение резервуаров а жидкостью)

Относительный покой жидкости, находящейся в резервуаре, вращающемся вокруг вертикальной оси с постоянной угловой скоростью

Относительный покой жидкости, находящейся в резервуаре, вращающемся вокруг горизонтальной оси

Относительный покой жидкости, находящейся в резервуаре, движущемся по наклонной плоскости с ускоренней

Относительный покой жидкости. . 19 и насадков

Относительный покой материальной

Относительный покой материальной точк

Относительный покой материальной точки

Относительный покой несжимаемой жидкости

Поверхности равного давления. Относительный покой жидкости

Покой жидкости

Покой мгновенный

Покой на поверхности Земли относительный

Покой относительный

Покой тела

Равновесие жидкости во вращающемся сосуде (относительный покой жидкости)

Рассеяние абсолютно упругих шариков рассеяния покоится



© 2025 Mash-xxl.info Реклама на сайте