Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление временное и теоретическая механика

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.  [c.9]

Общие вопросы расчета и конструирования механических устройств и их деталей рассматриваются в курсах Детали машин , Детали точных механизмов , Допуски и технические измерения , базой изучения которых служат курсы Теоретическая механика , Сопротивление материалов и Материаловедение . Сведения из них, необходимые для расчета и конструирования механических устройств, изучаются в одном курсе Механизмы приборных и вычислительных систем . Базой изучения этого курса являются только курсы математики и физики, по которым студент еще не имеет достаточной подготовки ко времени прохождения курса.  [c.3]


Движение звеньев механизма происходит под влиянием действующих на них сил. Их величины, характер воздействия и точки приложения циклически изменяются по трем основным причинам изменение нагрузок сопротивления как на рабочем органе, так и в самом механизме изменение движущих сил, обусловленных процессами, происходящими в двигателе машины изменение положения звеньев за цикл работы механизма. Совокупное изменение условий нагружения приводит к ускорениям или замедлениям движения звеньев, что вызывает инерционные воздействия на них и, как следствие,— изменение скоростей. Следован ел ьно, кинематические параметры звеньев — функции внешних сил. Они зависят от масс звеньев и их распределения по ним с учетом конкретной формы и размеров. Задача определения закона движения звеньев о определенной геометрической формой, размерами и массой при известных внешних силах и моментах сил и законов их изменения во времени решается на основе обидах принципов теоретической механики и называется динамическим расчетом.  [c.278]

По первой из послевоенных программ на изучение курса технической механики в машиностроительных техникумах отводилось 360 часов, из них на сопротивление материалов — 100 часов. Хотя эта программа и изобиловала неточными формулировками, но курс сопротивления материалов был представлен относительно полно. Правда, мало внимания было уделено расчетам на прочность при напряжениях, переменных во времени, не было темы Контактные напряжения и деформации , вошедшей в программы лишь в 1967 г. Следует заметить, что в тот период по каждому из разделов технической механики (теоретической механике, сопротивлению материалов и деталям машин) был предусмотрен экзамен.  [c.6]

Первый из этих вопросов решается на основе натурных и лабораторных наблюдений и во многом пока зависит от интуиции инженера. Быстро развивающаяся техника неразрушающего контроля сулит большие надежды, однако состояние этого вопроса нужно признать еще весьма далеким от желаемого. В то же время накопленный к настоящему времени экспериментальный и теоретический материал убеждает в том, что без решения указанного вопроса нельзя надеяться и на решение практической проблемы прочности. Казалось бы, методы статистических теорий хрупкой прочности позволяют обойти эту трудность, так как они приводят к зависимостям типа Ств 1 V — объем тела, Ств — среднее значение временного сопротивления, п — эмпирический коэффициент), в которые не входит размер дефекта, являющегося причиной разрушения. Коэффициент п изменяется от 6 для идеально хрупких материалов типа стекол до 50—100 для пластичных металлов. Однако оказывается, что в процессе эксплуатации пластичных металлов, например, при циклическом нагружении, коэффициент п может меняться от 100 до 6, а в случае весьма хрупких материалов случайный разброс Ств так велик, что делает невозможным расчет конкретной конструкции с позиций теорий прочности. Механика хрупкого  [c.519]


Здесь приводятся общие определения и аксиомы (гипотезы), на которых строится наука сопротивление материалов . На них основано изложение теоретического материала, приведенного в каждой из глав основной части задачника. Причем полагаются известными такие понятия теоретической механики как сила масса температура перемещение материальной точки а также аксиома об абсолютности времени.  [c.582]

В механике в качестве основного объекта исследования внутренних напряжений и деформаций тела берется малый его объем такой, что практически он содержит очень много атомов и даже много зерен, но в математическом отношении он предполагается бесконечно малым. Допускается, что перемещения, напряжения и деформации являются непрерывными и дифференцируемыми функциями координат внутренних точек тела и времени. Предполагается, далее, что возникающие за счет внешних воздействий на тела внутренние напряжения в каждой точке зависят только от происходящей за счет внешних воздействий дефор мации в этой точке, от температуры и времени. Таким образом, наряду с понятием абсолютно твердого тела в механике возникает новое понятие материального континуума или непрерывной сплошной среды и, в частности, сплошного твердого деформируемого тела . Это понятие оказалось чрезвычайно плодотворным не только в теоретическом и расчетном отношении, поскольку позволило для исследования прочности привлечь мощный аппарат математического анализа, но и в экспериментальном, поскольку выявило, что для исследования прочности твердых тел имеют значение лишь механические свойства, т. е. связь между напряжениями, деформациями, временем и температурой, а не вся совокупность сложных взаимодействий, определяющих полностью физическое состояние реального твердого тела. Отсюда возникли специальные экспериментальные методы исследования механических свойств различных материалов. Возникла, и притом более ста лет тому назад, механика сплошных сред или континуумов и такие основные науки о прочности твердых тел, как сопротивление материалов, строительная механика, теория упругости и теория пластичности.  [c.12]

Некоторые теоретические идеи братьев Лилиенталь, Отто и Густава (1849-1933) были довольно туманными. Они посвятили много времени изучению возможности создания отрицательного сопротивления, т. е. движению вперед с помощью особенной формы профиля крыла без обеспечения мощности. Через несколько лет после смерти своего брата Отто, погибшего в результате аварии в 1896 году, Густав Лилиенталь действительно опубликовал теорию этого явления, которая несомненно противоречит принципам механики. При упорном поиске научной истины в юношеские годы я однажды назвал его незначительным братом великого человека , выражение, которое, я считаю, обидело его. Теперь я раскаиваюсь в этом, когда оглядываюсь назад на подростковый период в развитии аэродинамической пауки.  [c.31]

После издания первого тома этой книги прошло несколько лет. Хотя успехи прикладной механики за последние десятилетия отмечены рядом глубоких статей и несколькими новыми книгами, посвященными математической теории пластического деформирования твердых тел, многие из этих исследований имеют сугубо теоретический характер и посвящены доказательствам принципов, практическая ценность которых еще неясна. Очень немногое из недавно написанного имеет целью наметить в механике деформируемых твердых сред новые перспективы, которые привели бы к лучшему пониманию тех задач, где в качестве переменных состояния берутся скорость пластической деформации и температура или учитывается влияние времени на сопротивление тел течению. Как ни странно, несмотря на огромное количество экспериментальных данных (рассеянных по специальным журналам), еще не удовлетворена все возрастающая потребность в нескольких исчерпывающих руководствах, в которых излагались бы основные сведения о деформировании твердых тел в диапазоне вплоть до температур плавления и делалась бы попытка объяснить законы взаимосвязей между скоростями пластической деформации и температурой.  [c.8]

Прочность, жесткость и устойчивость конструкции должны быть обеспечены не в уш ерб работоспособности и стоимости конструкций. Так, самолеты и другие летательные аппараты должны быть возможно более легкими, а используемые в них материалы и технология производства — обеспечивать разумную их стоимость. Природа, решая этот вопрос для своих созданий — растений и животных, использовала эволюционный процесс естественного отбора, который основан на массовом эксперименте но выживанию особей под воздействием внешней среды. Среди этих воздействий были и такие, которые требовали достаточной прочности при минимальных затратах. В результате ей удалось создать такие замечательные в смысле прочности тела, как ствол бамбука, кости птиц и млекопитаюш,их и т.д. Человек при создании конструкций вынужден ориентироваться на минимум эксперимента, который требует обычно больших материальных затрат и длительного времени, и переносить центр тяжести на теоретические исследования. В частности, насуш,-ная необходимость в изучении таких фундаментальных свойств тел, как прочность, жесткость и устойчивость, привела к созданию в рамках механики обширного раздела этой науки — механики твердого деформируемого тела. Сопротивление материалов является частью этого раздела, сконцентрировавшей его  [c.8]


Развитие исследований по процессам деформации и разрушения в механическом и физическом аспектах способствует усовершенствованию расчета деталей конструкций на прочность и жесткость. Рассмотрение предельных состояний по критерию образования пластических деформаций, жесткости инициированию и развитию трещин позволило сблизить результаты расчетов с действительной несущей способностью конструктивных элементов и соответствующими опытными данными. Тем самым были углублены теоретические и экспериментальные основы инженерных расчетов на прочность и долговечность в связи с типом и режимом напряженного состояния. Дополнения физики твердого тела и физического металловедения способствовали объяснению макроскопическик закономерностей сопротивления деформациям и разрушению, влиянию на них времени тепловых и механических воздействий. При этом намечаются пути взаимодействия механики деформации и разрушения в констануальной трактовке с физическими представлениями о поведении кристаллов и кристаллических конгломератов.  [c.517]

Общетеоретические вопросы динамики реактивного движения тел переменной массы продолжали занимать большое место в литературе 30-х годов. Вертикальное движение ракеты рассматривал в своей работе В. П. Ветчин-вин учитывая силы тяжести и квадратичный закон сопротивления воздуха л считая плотность среды уменьшающейся экспоненциально с возрастанием высоты. Предполагалось, что масса ракеты изменяется по линейному закону в зависимости от времени. Актуальным для того времени теоретическим вопросам механики тел переменной массы были посвящены работы И. А. Меркулова В. С. Зуева , М. К. Тихонравова Несколько интересных книг.  [c.237]


Смотреть страницы где упоминается термин Сопротивление временное и теоретическая механика : [c.12]    [c.6]    [c.7]   
Сопротивление материалов (1962) -- [ c.13 ]



ПОИСК



Временное сопротивление (ов)

Механика теоретическая

Ось временная



© 2025 Mash-xxl.info Реклама на сайте