Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости при динамическом испытании

Снижение температуры испытания ниже комнатной у гладких образцов приводит к повышению прочностных характеристик механических свойств (но к снижению характеристик пластичности) и пределов выносливости гладких образцов (рис. 50). При определении влияния температуры испытаний необходимо помнить о возможности фазовых превращений в сплавах и явлениях динамического возврата. Следует также нс путать влияние температуры при усталости с термической усталостью, которая имеет другую природу.  [c.82]


На основе динамической кривой растяжения было установлено и доказано, что при истинно изгибных напряжениях у мягкой стали имеет место такая же усталостная прочность, как и при испытаниях на осевое нагружение. Это исследование наводит на мысль о том, что никакого влияния размеров при изгибе не было бы обнаружено, если бы рассматривались действительные напряжения в поверхностном слое, а не номинальные напряжения. Необходимо при этом предположить, что данный материал обладает способностью выдерживать неограниченное циклическое пластическое течение без разрушения, и подтвердить это допущение тем фактом, что образцы при работе на пределе выносливости могут оставаться нагретыми лишь вследствие пластических деформаций.  [c.60]

Для определения влияния статической составляющей растяжения на усталость профильной части лопатки следует использовать -специальные модели лопаток. Для испытания моделей лопаток созданы специальные машины типа У-361 [45]. Эти машины резонансного типа с частотой колебаний 40. .. 150 Гц, амплитуда изгибающего момента в процессе испытаний поддерживается автоматически. Нагружение модели статической составляющей осуществляется электродвигателем через червячный редактор. Знакопеременный изгибающий момент создается центробежным, эксцентриковым вибратором. Перед испытаниями проводят динамическую тарировку. Для этой цели исследуемую модель препарируют тензорезистора-ми и определяют распределение деформации по длине модели. Если. испытания проводят при повышенной температуре, то для моделей определяют заданное температурное поле в опасном сечении замкового соединения или профиля. В процессе испытаний на усталость поддерживают заданными амплитуду изгибающего момента и Температурное поле. Предел выносливости определяют по результатам испытаний 15. .. 20 моделей лопаток. За предел выносливости принимают максимальную амплитуду напряжений, соответствующую N 5-W , при котором не разрушилось четыре модели.  [c.122]

В ряде работ [7, 14] физический предел выносливости рассматривается как результат проявления динамического деформационного старения. С точки зрения Дж. К. Леви [20], в условиях циклического деформирования при комнатной температуре наблюдается относительно медленное, но эффективное закрепление дислокаций в результате динамического деформационного старения. В этом случае накопление усталостного поврежде-ния и деформационное старение рассматриваются как конкурирующие процессы. Предполагается, что при циклическом нагружении выше предела вьшосливости интенсивность повреждения больше интенсивности упрочнения, обусловленного динамическим деформационным старением. Было предположено, что кривая усталости стали, склонной к деформационному старению, лежит между кривой усталости нестареющей стали и кривой усталости стали, полностью состаренной перед испытанием (рис. 5.2), Возможность развития деформационного старения при напряжениях, близких к пределу усталости, обусловлена тем, что в процессе циклического нагружения углеродистых сталей при указанных напряжениях (даже при напряжениях ниже предела усталости) наблюдается локальная пластическая деформация. Наличие этой деформации, значительная длительность испытания на уровне напряжений, близких к пределу усталости, возможность температурных пиков в местах локальной пластической деформации и, наконец, влияние самого процесса циклического  [c.159]


Получены данные [24], подтверждающие тот факт, что динамическое деформационное старение оказывает сильное влияние на форму кривой усталости и способствует наличию физического предела выносливости. Испытания на усталость при знакопеременном изгибе и кручении проводились на образцах из малоуглеродистой стали в диапазоне температур испытания 20-500 °С. Из полученных результатов следует (рис, 5,4), что при температуре испытания 300 С, при которой в этих условиях должно протекать наиболее интенсивное деформационное старение, кривые усталости имеют четко выраженный физический предел выносливости (предел выносливости имеет при этом наибольшее значение).  [c.162]

Изучение влияния деформационного старения на форму кривых усталости позволило выявить и ряд закономерностей. В частности, можно утверждать, что статическое и динамическое деформационное старение способствует повышению значения предела выносливости. Наклон кривых усталости в результате предварительного статического деформационного старения возрастает, а точка перегиба кривой усталости при выходе на горизонтальный участок смещается в сторону меньших циклов нагружения [73]. Однако такой характер изменения кривых усталости наблюдается при степенях предварительной пластической деформации, не превышающих 10% (статическое растяжение). При больших степенях предварительной деформации имеются противоречивые данные о форме кривой усталости после предварительного деформационного старения. В ряде случаев наблюдается исчезновение четко выраженного физического предела выносливости [40]. В аустенитной нержавеющей стали типа 304 эффект динамического деформационного старения при малоцикловой усталости проявляется при температурах испытания 300-500 При этом на петлях механического гистерезиса наблюдается прерывистое пластическое течение [45, 47].  [c.237]

Прочность при динамических нагрузках определяют по данным, полученным в результате испытаний на ударную вязкость, предел выносливости и ползучесть. Значительно чаще используют испытания на ударную вязкость.  [c.552]

Прочность при динамических нагрузках определяют по данным испытаний на ударную вязкость, на предел выносливости и ползучесть. Наиболее часто применяют испытания на ударную вязкость в МН-м/м  [c.10]

Однако при испытании в воздухе образцы с более шероховатой поверхностью показали снижение предела выносливости. Такое явление объясняется концентрацией напряжений около впадин неровностей при динамическом деформировании образцов в воздухе, в то время как в жидких средах это влияние уменьшается.  [c.62]

К основным механическим свойствам металлов относят прочность, твердость, упругость, пластичность, ударную вязкость. Прочность — способность металла сопротивляться разрушению или появлению остаточных деформаций под действием внешних сил. Большое значение име т удельная прочность, ее находят отношением предела прочности к плотности металла. Для стали прочность выше, чем для алюминия, а удельная прочность ниже. Твердость — это способность металла сопротивляться поверхностной деформации под действием более твердого тела. Упругость — способность металла возвращаться к первоначальной форме после прекращения действия сил. Пластичность — свойство металла изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом. Ударная вязкость — способность металла сопротивляться разрушению под действием динамической нагрузки. Кроме указанных механических свойств можно назвать усталость (выносливость), ползучесть и др. Для установления характеристик механических свойств производят их испытания.  [c.30]

При повышенных температурах иепытания на усталость обычно наблюдается снижение пределов выносливости а связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю (кривые 1 и 4 на рис. 49). В углеродистых сталях в интервале температур испытаний 150 - 400 С наблюдается аномальное повышение пределов выносливости по сравнению с испытамиями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения (рис. 49, кривая 3).  [c.81]


Более продолжительный период // заметно отличается от периода /. В частности, в начале периода // при напряжениях выше предела выносливости величина прогиба образцов уменьшается и тем интенсивнее, чем больше амплитуда приложенных напряжений. Это вызвано нагревом образцов, способствующим протеканию динамического д ормационного старения, следствием которого является ускоренный процесс упрочнения. С понижением амплитуды напряжений самонагрев образцов снижается, а величина прогиба стабилизируется. В конце периода // появляются разветвленные макротрещины, перерастающие в магистральную трещину. Период /// соответствует ускоренному росту усталостной макротрещины. При напряжениях, близких к пределу выносливости, деление деформационных кривых на периоды не имеет смысла, т.е. этй кривые при испытании образцов в воздухе трансформируются в почти прямые линии.  [c.79]

Тщательный анализ эффекта перераспределения напряжений был проделан Форрестом и Тапселлом [961], причем полученные результаты полностью основаны на экспериментальных данных. Была получена кривая растяжения при динамическом нагружении для характерного усталостного режима. Эта кривая показала, что у мягких сталей текучесть имеет место при более низких напряжениях в случае динамического нагружения, чем статического. Так, условный предел текучести оо,1 снизился с 30,5 до 22,8 кГ1мм при переходе от статического к динамическому нагружению, причем последняя величина ближе к пределу выносливости. Следовательно, перераспределение напряжений, вызванное пластическими деформациями в процессе усталостных испытаний, вероятно, гораздо больше, чем можно было бы ожидать из рассмотрения статической кривой растяжения.  [c.59]

Композиты на основе легких металлов и сплавов обладают повышенными характеристиками при кратковременных и длительных, статических и динамических нагружениях в широких температурных диапазонах испытаний. Обладают они существенными преимуществами перед традиционными металлическими материалами и при циклическом нагружении. В частности, бороалюминий и углеалюми-ний имеют показатели предела выносливости [211, представленные в табл. 4.31.  [c.119]

Рекомендованные в методике опытные значения пределов выносли ности сплава АМг61 по сравнению с аналогичными значениями, полученными в сопоставимых условиях и при одинаковых значениях N0, в 2,4 раза ниже, чем у стали Ст. 3. Испытания при трех значениях г позволили обосновать. зависимость предела выносливости Очк от среднего напряжения циклов а . Было исслеДовано влияние на усталостную прочность элементов металлических конструкций предварительного однократного статического нагружения высокими нагрузками, что соответствует условиям инспекторских испытаний кранов с динамической и статической перегрузками и двухступенчатого циклического нагружения, соответствующего принятой в краностроении упрощенной гистограмме, состоящей из большого числа циклов нормальных нагрузок рабочего состояния и малого числа циклов максимальных нагрузок рабочего состояния (резкие пуски и торможения механизмов и т. д.), причем в последнем случае учитывается повреждающее влияние максимальных нагрузок рабочего состояния, проявляющееся в снижении исходного предела выносливости элемента соединения.  [c.382]

Оптимальным содержанием углерода в цементованном слое большинства сталей следует считать примерно 0,8—1,03% такое содержание углерода в слое достаточно для обеспечения высокой износостойкости стали, а большее содержание углерода в слое приводит лишь к уменьшению пределов выносливости и прочности стали при статических и динамических испытаниях. Однако наибольшей износостойкостью обладает цементованный слой при несколько более высоком содержании в нем углерода, когда после термообработки он имеет структуру мелкоигольчатого или скрытокристаллического мартенсита с наличием мелких глобулей карбидов при полном отсутствии или небольшом количестве остаточного аустенита.  [c.268]

Оптимальное содержание углерода в цементованном слое большинства сталей — 0,8—1,05% при таком его количестве сталь обладает высокой износоустойчивостью при дальнейшем увеличении содержания углерода продолжают уменьшаться пределы выносливости и прочности стали при статических и динамических испытаниях (рис. 15). Однако наиболее износоустойчив цементованный слой при несколько повышенном содержании в нем углерода, когда после термической обработки имеет структуру мелкоигольчатого или скрытокристаллического мартенсита с мелкими глобу-лями карбидов, при отсутствии или небольшом количестве остаточного аустенита.  [c.1012]

Прн динамических испытаниях разрушение обыч1Но происходит в результате накопления остаточных деформаций в зоне наибольшей концентрации напряжений при многократном нагружении сварных соединений сверх предела упругости материала. Разрушение при испытаниях точечных соединений на статическую выносливость чаще всего происходит от вырыва точек по околошовной зоне, а в многорядных соединениях — от разрыва листа по границе сварных точек. На фиг. 137 представлены кривые статической выносливости точечных соединений  [c.203]

Проводимые в 1960 г. испытания выносливости заклепок из сплава В65-Т по методике, описанной выше для заклепок из сплава Д18-Т, показывают более высокие результаты. Так, ориентировочно определяемый предел выносливости заклепок из сплава В65-Т с учетом динамического коэффициента превышает 7,5 кг1мм при большом разбросе опытных точек. Излом заклепок по своему виду похож на излом, представленный на рис. 4,а. Трещин усталости Набоковой поверхности тела заклепок, как это изображено на рис. 4,6, в заклепках из сплава В65-Т не наблюдалось.  [c.221]

Динамические диаграммы напряжение — деформация, полученные во время испытаний на усталость образцов из различных материалов без учета концентрации напряжений, изображены на рис. 5.2. На калгдой кривой точкой отмечено напряжение, соответствующее разрущению гладкого образца при 10 циклов. Там, где эти точки лежат за пределами линейного участка диаграммы, в образце будет воз никать циклическая пластическая деформация. В подобных случаях для образцов с концентраторами будет также возникать перераспределение напряжений, вызывающее повышение выносливости в условиях концентрации. Следует отметить, что это явление имеет место только у мягкой и аустенитной сталей.  [c.119]



Смотреть страницы где упоминается термин Предел выносливости при динамическом испытании : [c.17]    [c.136]    [c.164]    [c.31]    [c.132]    [c.162]    [c.324]    [c.300]   
Сопротивление материалов (1962) -- [ c.157 ]



ПОИСК



158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

Выносливости предел

Выносливость

Испытание динамическое

Испытания на выносливость

Предел выносливости испытания



© 2025 Mash-xxl.info Реклама на сайте