Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптическое волокно потери

В последние годы наблюдается бурное развитие волоконно-оп-тических линий связи (ВОЛС), важнейшим элементом которых являются волоконно-оптические кабели (ВОК). Узкий световой лазерный луч. модулированный соответствующим образом, может распространяться на большие расстояния и передавать огромный объем информации. Использование его для передачи в атмосфере затруднено из-за больших потерь световой энергии, из-за поглощения и рассеяния, обусловленных загрязнением передающей среды (частички пыли, сажи, газы, капли влаги). По мере развития производства оптически чистых стекол и стеклянных нитей на их основе появилась возможность передавать световую энергию по ВОК, основным элементом которых является ОВ (оптическое волокно). В качестве материала для ОВ используются стекла на основе чистого кварца. Луч света, введенный от лазера в ОВ, распространяется вдоль его оси, если показатель преломления в центре волокна больше, чем у его внешней поверхности. Это достигается, например, путем изготовления двухслойного ОВ, центральная часть которого (сердечник) за счет легирующих добавок имеет показатель преломления, немного больший наружного слоя ОВ (светоотражающая оболочка).  [c.265]


Длина волны его излучения (i = 0,85 мкм) попадает в диапазон, в котором мы имеем минимум потерь в оптическом волокне из плавленого кварца (первое окно пропускания). В настоящее время усиленно разрабатываются лазеры с двойной гетероструктурой, работающие на длине волны либо X  [c.413]

Затухание излучения внутри оптического волокна обусловлено как поглощением в материале волокна (включая рассеяние, вызванное флуктуациями плотности на микроскопическом и атомном уровнях), так и самим процессом распространения света в волноводе. Первый механизм затухания определяется материалом и может быть исследован на любом образце этого материала, тогда как второй определяется геометрической формой волновода. Потери, обусловленные поглощением в стекле, можно подразделить на три части поглощение материала, поглощение на примесях, неизбежно присутствующих в материале, и поглощение на атомных дефектах. Эти потери можно описать феноменологически через коэффициент потерь а. — характеристику рассматриваемого материала, который определяет относительное затухание на единицу длины полной энергии, переносимой электромагнитным полем. Разумеется, необходимо ввести два коэффициента потерь 1 и 2 первый из которых относится к материалу сердцевины, а  [c.603]

Конечный диаметр оболочки приводит к дополнительному затуханию, обусловленному тем, что часть электромагнитной энергии распространяется в окружающем волокно покрытии, которое обладает большими потерями. Другие виды потерь вызываются нелинейными оптическими эффектами, вынужденным комбинационным рассеянием и рассеянием Мандельштама — Бриллюэна, которыми в оптических волокнах при низкой мощности света можно, как правило, пренебречь (см. разд. 8.18).  [c.605]

В этих условиях остается только одно, а именно, чтобы извлечь из величины Рщ) некоторую практическую информацию, необходимо найти флуктуации величины Р относительно среднего значения, тогда относительно малая величина этих флуктуаций позволит надеяться на то, что средняя величина совпадает с фактической. Для того чтобы это осуществить, необходимо записать систему дифференциальных уравнений для и Р Р ). Считая, что оптическое волокно не имеет потерь и возбуждается монохроматическим сигналом, для Р ) (Р Р У можно написать следующие уравнения [19]  [c.618]

Таким образом, использование оптического волокна обусловливается рядом преимуществ, таких как низкие потери, широкая полоса пропускания, секретность и невосприимчивость по отношению к ЭМН.  [c.35]


Увеличиваются, уменьшаются или остаются без изменений потери в медном кабеле по мере увеличения частоты сигнала В оптическом волокне  [c.36]

Во-первых, потери оптической энергии — затухание — в оптическом волокне зависят от модового распределения. На коротких расстояниях, когда РРМ еще не достигнуто, потери пропорциональны длине. После достижения РРМ потери пропорциональны квадратному корню длины.  [c.72]

ПОТЕРИ В ОПТИЧЕСКИХ ВОЛОКНАХ  [c.75]

Потери, обусловленные рэлеевским рассеянием, могут быть минимизированы путем возможно более тщательного контроля процесса охлаждения расплава, из которого затем будет вытягиваться волокно. Вероятно, эти потери будут больше в многокомпонентных стеклах из-за изменений в их составе. Характерная особенность данного явления состоит в том, что рассеиваемая мощность, а, следовательно, и потери обратно пропорциональны длине волны в четвертой степени. Из рис. 3.1 видно, что именно рэлеевское рассеяние, а не край полосы ультрафиолетового поглощения является основной причиной потерь в кварцевых оптических волокнах на длинах волн короче 1,5 мкм. Типичное значение потерь, обусловленных этим механизмом потерь.  [c.80]

Потери света в оптических волокнах обусловлены его поглощением и рассеянием в процессе распространения по волокну. Предел фундаментального поглощения определяется краями ультрафиолетовой  [c.91]

Рис. 4.2. Уровни потерь в оптических волокнах, изготовленных методом двойного тигля Рис. 4.2. Уровни потерь в <a href="/info/10236">оптических волокнах</a>, <a href="/info/667713">изготовленных методом</a> двойного тигля
Умение точно измерять такие характеристики оптического волокна, как диаметры оболочки и сердцевины, числовая апертура и профиль показателя преломления, потери и дисперсия одинаково важно как для изготовителей волокна, которые хотят его использовать для контроля и управления характеристиками волокна, так и для разработчиков оптических систем связи, которым следует выбрать волокно, наиболее полно отвечающее поставленным требованиям. Чтобы обле-чить эти изменения, было предложено много методов и разработан-большое число достаточно сложной аппаратуры для их реализации. Часть этой аппаратуры создана для измерения характеристик волокна непосредственно в процессе его изготовления (в реальном времени), другая часто — для использования в процессе эксплуатации волокна в системе связи и, наконец, часть такой аппаратуры может быть использована только в лаборатории для исследовательских целей. Были предложены очень тонкие и сложные методы для определения профиля показателя преломления волокна и измерения его числовой апертуры в зависимости от длины волны. Хорошее описание многих из этих методов можно найти в более обстоятельных обзорах, таких как 14.1. .. 4.3], тогда как более подробный и специальный анализ вопроса при-веде н в 14.5] и 14.6]. Поэтому в данном параграфе не будем давать детального и исчерпывающего описания всех методов, а просто рассмот-  [c.109]

Для сравнения там же приведены не зависящие от частоты сигнала уровни затуханий. В зависимости от типа волокна они могут быть менее 1 дБ/км или более 1000 дБ/км. Высококачественные, не содержащие воды кварцевые оптические волокна могут использоваться в диапазоне длин волн 1,5. ..,1,6 мкм при общем уровне потерь менее  [c.115]

Значительно более серьезны потери обусловленные критическим углом. От них зависят ограничения на связь между яркостью источника и мощностью, переданной в оптическое волокно. Эти вопросы подробно обсуждаются в 8.6 и Приложении 5, а практические примеры согласующих устройств светоизлучающий диод — волокно приводятся в 8.6 и 9.3.  [c.226]

Когда в гл.З рассматривалось затухание света в оптических волокнах, было удобно различать потери иа поглощение и потери на рассеяние. Это справедливо и для затухания света в атмосфере. Поглощение света вызывается главным образом водяными парами и углекислым газом, рассеяние — частицами пыли и каплями воды. Существуют и  [c.403]


Такой световод напоминает (см. 1.2) волновод, широко используемый в технике СВЧ. Этот способ транспортировки светового потока применяется в волоконной оптике для передачи информации модулированным световым сигналом. Однако при этом возникли существенные трудности и лишь в последние годы были решены проблемы, основанные на использовании весьма чистых и однородных волокон. Дело в том, что наличие в стеклянном волокне мельчайших пузырьков воздуха, трещин, пылинок и т.д. приводит к рассеянию световых волн и резкому возрастанию потерь энергии, нацело исключающих возможность применения системы таких волокон для целей оптической дальней связи. В результате интенсивной исследовательской работы в 70-е годы была разработана технология получения оптических волокон очень высокого качества. Потери энергии в таких световодах оказываются того же порядка, что и затухание электрического импульса, распространяющегося в металлическом проводнике. Можно ожидать, что несомненная выгода передачи информации на оптических частотах будет реализована не только в условиях космоса, где не играют роли помехи, неизбежно возникающие при распространении свободной световой волны в приземной атмосфере.  [c.93]

Интересный чертой волноводной дисперсии является то, что ее вклад в D (или pj) зависит от параметров волокна радиуса сердцевины а и разности показателей преломления сердцевины и оболочки Ли. Этот факт может использоваться для смещения длины волны нулевой дисперсии Хд к 1,55 мкм, где световоды имеют минимальные потери. Такие световоды со смещенной дисперсией [63] могут в перспективе применяться в оптических системах связи. Можно создавать волоконные световоды с весьма пологой дисперсионной кривой, имеющие малую дисперсию в широком спектральном диапазоне 1,3-1,6 мкм. Это достигается путем использования многих слоев оболочки. На рис. 1.7 показаны измеренные дисперсионные кривые [64] для двух таких световодов с несколькими оболочками, имеющих двух- или трехслойные оболочки вокруг сердцевины. Для сравнения дисперсионная кривая для световода с однослойной оболочкой также показана (штриховой линией). Световод с четырехслойной оболочкой характеризуется низкой дисперсией ( D < 1 пс/км нм) в широкой спектральной области от 1,25 до 1,65 мкм. Световоды с модифицированными дисперсионными характеристиками полезны для изучения нелинейных эффектов, когда в эксперименте требуются специальные дисперсионные свойства.  [c.18]

Обсудим эксперименты по компрессии импульсов YAG Nd + лазеров на основной частоте. При переходе из видимого в ИК диапазон частот уровень оптических потерь в световоде снижается с 16—20 до 0,2—1 дБ/км, что позволяет использовать волокна длиной —10 м и эффективно сжимать импульсы малой мощности.  [c.261]

Обычное стеклянное волокно, применяемое в текстильном производстве, дает потери света 1,4% на длине 1 см, а волокно, вытянутое из оптического стекла, — до 0,7% на 1 см. Кроме потерь в массе стекла, происходят потери из-за неровностей боковых поверхностей.  [c.284]

Обычное стеклянное волокно, применяемое в текстильном производстве, дает потери света 1,4% на длине 1 см, а волокно, вытянутое из оптического стекла, до 0,7% на  [c.295]

А о,збСао,б4Аз р — Л -гетеропереходу. Такие молярные доли AIAs характерны для ДГС-лазеров, используемых в системах волоконно-оптической связи. ДГС-лазер с д = 0,08 в активном слое излучает на длине волны 0,82 мкм, на которой в оптическом волокне потери прн передаче имеют минимум.  [c.255]

Явление полного внутреннего отражения, управляющее распространением света в оптических волокнах, было известно еще в XIX в, [1]. Первые стеклянные волокна без оболочки [2-4] были изготовлены в 20-х годах нашего столетия, тем не менее развитие волоконной оптики начинается только в 50-е годы, когда использование оболо-чечного слоя [5-7] привело к значительному улучшению характеристик световодов. Волоконная оптика тогда быстро развивалась главным образом с целью использования оптических кабелей из стеклянных волокон для передачи изображений. В книге Капани [8], изданной в 1967 г., дан обзор успехов, достигнутых к тому времени в области волоконной оптики. Первые волоконные световоды по современным меркам имели очень больщие потери (типичные потери составляли 1000 дБ/км). Однако ситуация резко изменилась в  [c.9]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Во многих отношениях оптическое волокно аналогично полым волноводам с внутреиними поверхностями из хорошо проводящего металла, широко применяемым в технике СВЧ. Электромагнитные поля в этих системах имеют подобную структуру. Распространение света в цилиндрическом прозрачном волокне или прямоугольной диэлектрической пленке носит волноводный характер. Физические принципы действия оптических волноводов и других тонкопленочных структур составляют теоретическую базу новой бурно развивающейся области прикладной физики, получившей название интегральной оптики. Интерес к оптическим способам передачи и обработки информации быстро растет, что обусловлено преимуществами оптической связи в таких системах, где требуется высокая надежность, помехозащищенность, большая скорость передачи информации при малых габаритах и массе. Основные трудности реализации таких систем связаны с потерями световой энергии в диэлектрическом световоде, вызванными поглощением или рассеянием света в волокне, а также нерегулярностями границы раздела между сердцевиной и оболочкой. Эти потери предъявляют очень жесткие требования к технологии изготовления световодов. В результате интенсивной исследовательской работы в 70-х годах была разработана технология получения оптических волокон и световодных кабелей с малыми потерями из кварца и специальных стекол, что открыло путь к практической реализации оптических систем дальней связи.  [c.157]


Ослабление сигнала в оптических волокнах-световодах происходит как за счет поглощения, так и за счет релеевского рассеяния излучения. Можно различать собственное поглощение, которое вызвано взаимодействием распространяющейся волны с компонентами вещества световолокна, и поглощение, связанное с наличием примесей, например, ионов хрома, железа, никеля, магния и других элементов, в частности, воды. Однако полосы поглощения из-за второй причины очень узки. Большая доля потерь световой энергии возникает из-за радиационных потерь релеевское рассеяние получается из-за флуктуаций плотности вещества волокна или нерегулярности световода — изгибания, неравномерности диаметра и т. д.  [c.75]

В 1966 году Чарльз Као и Чарльз Хокхэм, работавшие в английской лаборатории телекоммуникационных стандартов, опубликовали статью о том, что оптические волокна могут использоваться как среда передачи при достижении прозрачности, обеспечивающей затухание (определяет потери при передаче сигнала — прим. ред.) менее 20 дБ/км (децибел на километр). Они пришли к выводу, что высокий уровень затухания, присущий первым волокнам (около 1000 дБ/км), связан с присутствующими в стекле примесями. Бьш также указан путь создания пригодных для телекоммуникации волокон, связанный с уменьшением уровня примесей в стекле.  [c.5]

Ширина полосы пропускания связана со скоростью передачи информации. Потери (затухание) определяют расстояние, на которое может передаваться сигнал. По мере того как сигнал перемеш ается по передаюш ей линии, будь это медный кабель или оптическое волокно, его амплитуда уменьшается. Это уменьшение амплитуды называется затуханием. В медном кабеле затухание увеличивается с ростом частоты модуляции. Чем больше частота сигнала, тем больше потери. Напротив, в оптическом кабеле затухание не зависит частоты и остается постоянным в определенном диапазоне частот, вплоть до очень высоких, и как правило, неиспользуемых частот. Таким образом, проблема затухания более характерна для медного кабеля, особенно при увеличении объема передаваемой информации.  [c.29]

В книге английского специалиста достаточно полно изложены все вопросы. относящиеся к оптическим системам передачи информации. Приведена обобщенная схема оптического канала, даны основные характеристики существующих излучателей и фотоприемников, а также классификация цифровых оптических систем связи в зависимости от их пропускной способности. Рассмотрены особенности распространения света и механизмы потерь в оптических волокнах. Описаны методы изготовления оптических волокон. Рассмотрены принцип действия и основные характеристики полупроводниковых лазеров и фотоприемииков различных типов.  [c.4]

На практике, однако, минимально допустимый радиус изгиба определяется, исходя из механических свойств волокна, а не потерь на из-1иб. Если волокно изогнуто столь сильно, что поверхностные напряжения превысят 0,2 %, то весьма вероятно, что в процессе эксплуатации в нем возникнут значительные трещины. Чтобы предотвратить это, оптическое волокно помещают в достаточно жесткий кабель. Рассмотрим волокио с радиусом сердцевины а = 30 мкм, диаметром оболочки 2 ) = 125 мкм, которое имеет следующие параметры п 1,5 Ап 0,01 и ЫА 0,17. Пусть это волокно намотано на барабан радиусом Я — Ь) так, что нейтральная ось волокна изогнута по окружности радиуса как это и показано на рис. 3.4. Тогда напряжение сжатия внутренней поверхности волокна и напряжение растяжения его наружной поверхности будут определяться величиной ЬШ. Чтобы эти напряжения не превысили 0,2%, радиус Я должен быть больше >/0,002 = 500 Ь. В данном примере это требование выполняется при > 31 мм. С другой стороны, критический радиус изгиба для рассматриваемого волокна будет равен = а/ 2п-Ап) а/0,03=  [c.81]

При малых дозах облучения наведенные ионизирующим излуче-. нием потери прямо пропорциональны дозе. Однако чувствительность к радиации у различных волокон разная и колеблется от 0,1 до 10 (дБ/км)/рад Эти цифры получены в результате измерений, проведенных на длине волны 0,82 мкм. Имеются некоторые доказательства того, что иа более длинных волнах возрастание потерь будет меньше. В многокомпонентных стеклах химические связи особенно чувствительны к радиации, и поэтому оптические волокна, имеющие сердце-вину из кварца, легированного ОеОг или В2О3, более чувствительны к воздействию радиации, чем волокна из чистого искусственного квар-  [c.83]

Естественно, что конструкции оптических кабелей очень разнообразны (рис. 4.8). Оптическое волокно может быть уложено внутри трубки вдоль ее оси или по спирали вокруг центральной прочной жилы. Оно может лежать свободно внутри своей трубки в кабеле или может фиксироваться. В последнем случае кабель должен быть достаточно прочным и полностью заполнен эластичным материалом для сведения к минимуму поперечных и продольных напряжений в волокне. Часто отмечалось, что операция укладки волокон в кабель увеличивает потери в волокне из-за появления микроизгибов. Первоначально эти дополнительные потери могут составлять 0,5. .. 2 дБ/км, однако имеются данные о том, что впоследствии при уменьшении механических напряжений, созданных при изготовлении кабеля, они уменьшаются. Как будет показано в гл. 17, улучшение технологии изготовления кабелей привело к значительному уменьшению создаваемых при этом дополнительных потерь.  [c.105]

Модифицированный метод химического осаждения из газовой фазы (M VD) позволяет получать оптические волокна с самыми низкими потерями и самым тщательным контролем профиля показателя преломления. Так, изготовленные этим методом градиентные волокна имеют минимальные потери 0,34 дБ/км на длине волны 1,55 мкм при полосе пропускания более 1 ГГц-км, а минимальные потери одномодовых волокон составляют 0,2 дБ/км на длине волны 1,55 мкм.  [c.118]

Низкая эффективность системы светоизлучающий диод — оптическое волокно может быть улучшена, если удастся уменьшить потери на френелевское отражение. Один из способов осуществления этого показан на рис. 8.12, а. Диод соединен с волокном клеем, имеющим коэффициент преломления Пд, близкий по величине к коэффициенту преломления материала волокна. Кроме того, поверхность диода просветлена пленкой диэлектрического материала, такого как корунд (п = 1,76), окись кремния (п = 1,9) или нитрид кремния (п 2,0). В 2.1.2 ггроведен анализ, который привел к формуле (2.1.13) и найдено, что доля излучения, переданного в волокно и распространяющегося по не-  [c.230]

Теперь очевидно, что любую сеть связи, использующую тройники-регенераторы можно рассматривать как органп ованный набор магистральных линий. В данном случае замена электрических линий оптическими волокнами не является проблемой, значительно повышает информационную пропускную способность сети и, если это требуется, увеличивает расстояния между узлами. В кембриджское кольцо действительно была включена оптическая линия. Пассивные отводы, традиционно присоединенные к системам с шинами параллельного доступа, создают гораздо большие проблемы для использования волокна. Причина в том, что оптические отводы взаимны (эквивалентны). Если оптические сигналы вводятся в систему связи или выводятся из нее с помощью простого расщепителя пучка, то значительная часть их мощности, возможно, до половины (— 3 дБ) теряется на каждом тройнике. При двусторонней передаче сигналов по одному волокну нужны два таких расщепителя пучка на каждом оконечном устройстве и, кроме того, приходится прибегать к некоторым способам разделения принимаемого и передаваемого сигналов. Если нельзя реализовать эффективную оптическую коммутацию, то неизбежны потери 5. .. 10 дБ на тройник, включая потери в разъемах. Очевидно, что имеющийся запас мощности, приведенный иа рис. 17.2, сможет обеспечить работу только небольшого количества оконечных устройств даже при такой низкой информационной пропускной способности как 1 М бит/с.  [c.461]


Этот тройной твердый раствор представляет интерес вслед- ствие того, что ширина его запрещенной зоны лежит в интер-/Вале длин волн около 1 мкм, где оптическое волокно имеет наи- Меньшие потери на пропускание и минимум материальной ди- сперсии. Нейхори и др. [4] использовали ДГС-лазеры с активной  [c.27]

И 1,0 мкм возникает вследствие поглрщения на ионах ОН. Спектральная зависимость потерь лабораторного оптического волокна с низкой концентрацией ионов ОН показана на рис. 5.1.1. Излучение в области малых потерь на длине волны 0,85 мкм можно получить при 0,05 с<1 1/<< 0,1 и 0,3 л 0,4. На практике для применения в системах оптической связи используются полосковые ДГС-лазеры, а не лазеры с широким контактом. Тем не менее ДГС-лазеры с активной областью на А1уОа1 уАз будут кратко описаны здесь, так как добавление А1 в активную область влияет в большей степени на ограничение носителей на гетеропереходах, чем на ограничение в боковом направлении.  [c.221]

Оптическими или оптиковолоконными называют кабели, предназначенные для передачи информации по жилам, представляющим собой кварцевые волокна, которые обеспечивают передачу информации в широком спектре частот с маль1ми потерями и высокой помехозащищенностью, что позволяет по сравнению с традиционными кабелями связи с металлическими жилами резко увеличить объем передаваемой информации.  [c.206]

Важным параметром волоконного световода является мера потери мощности при распространении оптических сигналов внутри волокна. Если Рц-мощность, вводимая в волоконный световод длиной L, прощедщая мощность Pj дается выражением  [c.13]

Волоконные световоды обладают свойством направленно передавать световую энергию. Светопроводящие непрерывные волокна как минимум двухслойные. Наружный слой (оболочка) отличается от внутреннего (жилы) более низким показателем преломления, что обеспечивает прохождение света по жиле с минимальными потерями. Пучок оптических волокон называется световодом для передачн изображения, если торцы плотно уложенных волокон на концах пучка расположены строго одинаково. Если световодом необходимо обеспечить только передачу света, то достаточно осуществить плотную укладку волокон на торцах и нет необходимости в регулярной и одинаковой их укладке.  [c.251]


Смотреть страницы где упоминается термин Оптическое волокно потери : [c.413]    [c.616]    [c.199]    [c.12]    [c.32]    [c.445]    [c.5]    [c.49]    [c.15]    [c.56]   
Лазеры на гетероструктурах (1981) -- [ c.6 , c.22 ]



ПОИСК



Волокна

Оптические волокна

Оптические потери



© 2025 Mash-xxl.info Реклама на сайте