Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокнистые композиты, виды матриц

Волокнистые композиты, виды матриц 280  [c.476]

В настоящем обзоре делается попытка всесторонне осветить современное состояние вопроса о роли поверхности раздела в упругопластическом поведении композитов с металлической матрицей. Волокнистые композиты и композиты, изготовленные направленной кристаллизацией, рассматриваются с точки зрения очевидных различий в структуре и стабильности их поверхностей раздела. Особое внимание уделено структуре и стабильности поверхности раздела и ее роли при различных видах нагружения, т. е. растяжении, сжатии, ползучести и усталости. Как будет показано ниже, детали поведения поверхности раздела и ее роль стали проясняться с началом применения сканирующей электронной микроскопии, а также в результате эффективного использования электронной микроскопии на просвет и оптической металлографии совместно с рентгеновским микроанализом.  [c.233]


Рис. 6.2. Характерный вид разрушения при сжатии волокнистого композита на основе металлической матрицы Рис. 6.2. Характерный вид разрушения при сжатии волокнистого композита на <a href="/info/336545">основе металлической</a> матрицы
При создании волокнистых композитов используют высокопрочные стеклянные, углеродные, борные и органические волокна, металлические проволоки или волокна и нитевидные кристаллы ряда карбидов, оксидов, боридов, нитридов и других соединений. Волокнистая арматура может быть представлена в виде моноволокон, нитей, проволок, жгутов, сеток, тканей, лент, холстов. Важными требованиями для волокнистой арматуры являются их технологичность и совместимость с матрицей.  [c.756]

Рассмотрим подробнее феноменологическую сторону вопроса разрушения поверхности при трении. Поверхностный слой при сухом трении находится в сложно-напряженном состоянии сжатия со сдвигом. В работе [12] приводятся данные, полученные на основе изучения береговой линии частиц износа, которые показывают, что сила трения может инициировать в поверхностном слое как трещины нормального отрыва, так и трещины сдвига. Береговая линия каждой частицы образуется в результате объединения различных видов трещин. Можно предположить, что АЭ сигналы, соответствующие этим двум видам трещин, должны различаться. Это предположение основывается на результатах исследования разрушения волокнистых композитов. При этом было показано, что разрушение волокон при приложении осевой нагрузки к ним сопровождается относительно короткими сигналами АЭ, а разрушение же элементов композита, обусловленное сдвиговыми процессами (разрушение межфазовых границ раздела, вытягивание волокон из матрицы), сопровождается длинными сигналами АЭ. В нашем случае в качестве критерия относительной длины сигнала можно взять отношение двух измеряемых параметров АЭ сигнала - числа осцилляций 8 в сигнале к его максимальной амплитуде А в мВ на выходе канала усиления. Можно сделать еще одно предположение, которое заключается в том, что в первую очередь в поверхностном  [c.69]

В волокнистых металлических композитах, за исключением композитов с направленной эвтектикой, волокно и матрица, как правило, не находятся в состоянии химического равновесия. Из всех факторов, воздействующих на усталостную прочность композита, вероятно, самым малопонятным является влияние прочности и микроструктуры на границе раздела волокна и матрицы. Увеличение прочности происходит в результате того, что посредством касательных напряжений усилия передаются через границу раздела волокна и матрицы, и высокомодульные волокна несут большую часть приложенных параллельно им нагрузок. Поверхности раздела играют и другую важную роль в сопротивлении разрушению, контролируя вид распространения трещин они могут отклонять распространяющиеся трещины и задерживать рост трещин.  [c.396]


При некоторых условиях для статически неопределимой конструкции не только при растяжении, но и при сжатии уровень нагрузок, соответствующих наступлению общей неустойчивости, может значительно превышать нагрузки, вызывающие местную неустойчивость. Гораздо более вероятно, однако, что начало общей неустойчивости в виде выпучивания опережает появление местной неустойчивости или следует сразу л<е за ней. Существенная роль матрицы в волокнистом армированном композиционном материале заключается в фиксировании волокон в слое и самих слоев в материале. Относительная легкость выпучивания отдельных волокон и слоев композита при сжатии является наиболее сильным ограничением использования армирующих волокон для усиления материала в направлении действия сжимающих нагрузок.  [c.21]

Из слоистых композитов низкого давления (О—2,8 МПа) можно на месте изготавливать достаточно сложные элементы конструкций путем намотки волокна или используя препрег-лен-ту полимера (в стадии В) с волокном. Отверждение может происходить при комнатной температуре без приложения давления. Волокнистые композиционные материалы с металлической матрицей получают как из исходных элементов, так и из полуфабриката в виде ленты.  [c.72]

Основные виды композитов на основе металлической матрицы включают волокнистые, дисперсно-упрочненные, псевдосплавы, а также эвтектические. В качестве матриц для металлических композиционных материалов наиболее широко используются алюминий, магний, титан, никель, кобальт.  [c.105]

Это полимерные материалы, армированные различными видами волокнистых наполнителей на основе химических волокон термопластичных и термореактивных связующих (матриц). В их число обычно не включают композиты на основе АВН из природных волокон и их углеродных волокон.  [c.772]

Потенциальные возможности волокнистого композита в наибольшей степени проявляются при его нагружении в направлении волокон. В этом случае очень важен механизм передачи нагрузки от волокон к матрице и обратно. Существуют четыре возможных вида разрушения (1) разрыв волокна, (2) сдвиговое разрушение на границе раздела, (3) разрыв по границе раздела от растяжения и (4) разрыв матрицы. Полный микромеханиче-ский анализ напряжений должен предсказывать вид разрушения в данном композите и определять оптимальные свойства компонентов композита.  [c.517]

Рис. 8. З исимасть поперечной прочности волокнистого композита от содержания, вида рашоложения волокон и от силы овязи волокна с матрицей. Рис. 8. З исимасть поперечной прочности волокнистого композита от содержания, вида рашоложения волокон и от силы овязи волокна с матрицей.
В аналитических и экопериментальных исследованиях остаточных напряжений в волокнистых композитах используются два подхода — уже упомянутая выше модель коаксиальных цилиндров и модели регулярных типов расположения волокон. Первый подход основан на довольно простых математических соотношениях и поэтому применялся более широко [14, 27, 32]. Он был развит в работе [27] и позволил рассмотреть, наряду со свойствами, зависящими от температуры, влияние пластического течения в матрице, подверженной деформационному упрочнению. В этой и других работах пользуются не вполне определенным понятием температура релаксации внутренних напряжений имеется в виду температура, ниже которой влияние ползучести ослабевает и могут возникать напряжения значительной величины. Хекер и др. f27] устранили эту неточность, определив температуру релаксации внутренних напряжений путем сопоставления расчетных результатов с данными экспериментального определения остаточных напряжений в модельных композитах типа коаксиальных цилиндров.  [c.66]

Большинство композитов, описанных в настоящей главе, есть непрерывные однонаправленные волокнистые композиты (НОВК), имеющие большую объемную долю волокон. В результате продольная прочность в основном определяется прочностью самих волокон. Таким образом, если волокна обладают свойством ползучести, то им обладают и композиты на их основе. В небольшом числе работ по композитам, армированным вольфрамом и бериллием, обнаружено разрушение при ползучести. С другой стороны, разрушение под нагружением может появиться как результат комбинации двух факторов статистической прочности хрупких волокон и временных свойств вязкоупругой матрицы. Такая комбинация создает вероятность непрерывного изменения напряженного состояния внутри композита, даже при испытании на разрушение. Эти изменения также приводят к явлению запаздывания разрушения. Поэтому очень важно рассмотреть как матрицу, так и волокно при изучении длительной прочности композита, причем нужно иметь в виду, что матрицы оказывают очень незначительное влияние на кратковременную продольную прочность композитов, но играют очень важную роль в его длительной прочности. Часть работ посвящена исследованию эффектов скорости деформации на прочность НОВК оказалось, что только армированные стеклом композиты, по-видимому, чувствительны к изменениям скорости.  [c.269]


Рассмотрим более подробно технологические методы получения, основные свойства и области применения конкретных видов волокнистых композитов на основе металлической матрицы (МВКМ).  [c.114]

Как ВИДИМ, теоретически обоснованная возможность реалюации устойчивого закритического деформирования в злементах структуры композиционных материалов в данном случае с учетом неоднородности полей микронапряжений подтверждается результатами численного моделирования для волокнистых композитов. Результаты расчетов свидетельствуют, что области разупрочнения могут охватывать достаточно большую долю материала матрицы.  [c.263]

Необходимо также учитывать, что при оптимальных значениях параметров процесса смешивания частиц наполнителя со связующим диаметр капель связующего составляет 8—10 мкм [196]. С другой стороны, поверхность частиц, например древесного наполнителя, представлена либо частично, либо полностью разрушенными стенками древесных клеток [197]. При этом вскрытые элементы клеток имеют размеры 10 —30 мкм. Поскольку диаметр капель связующего сопоставим с размерами микронеров — ностей на поверхности частиц наполнителя, то клеевое соединение или клеевой шов по структуре ближе не к каплям или пленке связующего на подложке, а к волокнистому композиту с нерегулярной матрицей в виде кластеров.  [c.199]

Волокнистые композиты, состоящие из высокопрочной хрупкой фазы в виде тонких волокон и низкопрочной пластичной фазы — матрицы,— заполняющей пространство между волокнами, обладают достаточно Bbi oKHvi сопротивлением хрупкому разрушению, высокой температурной прочностью и низкой обра батывае.мостью резанием. Сопротивление деформированию к разрушению при резании этих материалов определяется направлением сдвиговых напряжений (в плоск ости волокон или перпендикулярно им).  [c.40]

Армирующие волокна. Известно, что теоретическая прочность материала Отеор возрастает с повышением модуля упругости и поверхностной энергии вещества и снижается с увеличением межатомных расстояний. Исходя из этого наибольшей прочностью должны обладать композиты, в которых в качестве материала армирующих волокон используются бериллий, бор, азот, углерод, кислород, алюминий и кремний. При создании волокнистых композитов используют высокопрочные стеклянные, углеродные, борные и органические волокна, металлические проволоки или волокна и нитевидные кристаллы ряда карбидов, оксидов, бори-дов, нитридов и других соединений. Волокнистая арматура может быть представлена в виде моноволокон, нитей, проволок, жгутов, сеток, тканей, лент, холстов. Важными требованиями, предъявляемыми к волокнистой арматуре, являются их технологичность и совместимость с матрицей.  [c.115]

На практике не всегда так ясно определимы различные виды разрушения. Композиты могут разрушаться в результате комби- нации механизмов, особенно если матрица может стать хрупкой под влиянием локального напряженного состояния. В указанных моделях единственной функцией матрицы является создание барьера для распространения трещины, а статистические результаты применимы только к прочности хрупкой составляющей. В действительности матрица может нести часть нагрузки и может влиять на величину пика напряжений в композите вследствие ее способности к пластической деформации. Растрескивание частиц не может быть независимым, так как разрушенная частица может сильно влиять на изменение распределения напряжений в ее окрестности и, следовательно, трещины не могут распределяться случайно. Влияние концентрации локальной деформации вследствие разрыва волокна в волокнистом композите обсуждено в [3] в связи со статистическими моделями Гюсера — Гурланда и Розена, приведенными в [36, 37, 77]. Связанная с ними проблема образования больших критических трещин проанализирована статистическими методами в [56].  [c.102]

Как отмечалось, по структуре и геометрии армирования композиты на основе металлической матрицы мопт быть в виде волокнистых (МВКМ), дисперсно-упрочненных (ДКМ), псевдо- и эвтектических сплавов (ЭКМ), а в качестве материала основы наиболее широко примешает такие металлы как А1, Mg, Ti, Ni, Со  [c.114]


Смотреть страницы где упоминается термин Волокнистые композиты, виды матриц : [c.684]   
Разрушение и усталость Том 5 (1978) -- [ c.280 ]



ПОИСК



Волокнистость

Волокнистые композиты

Волокнистые композиты, виды матриц при ударе

Волокнистые композиты, виды матриц скорости деформации

Композит



© 2025 Mash-xxl.info Реклама на сайте