Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель вязко-упругого тела Кельвин Максвелла

Первоначальные исследования в области реологии, относящиеся ко второй половине прошлого столетия и связанные с именами Максвелла, Фойгта, Кельвина, Больцмана, были посвящены течению весьма вязких жидкостей и дисперсных систем (коллоидных растворов, суспензий). Отправным пунктом этих исследований послужила идея объединения в одной модели свойств упругости и вязкости. Наибольшее развитие получила теория линейных вязко-упругих тел, т. е. таких, для которых реологическое соотношение имеет вид  [c.753]


В качестве примеров исследованы задачи о росте трешин в материалах, описываемых моделями Максвелла, Фойгта и Кельвина (стандартное линейное тело). В заключение рассмотренная задача обобщается на пространственный случай. Указывается, что из полученных результатов легко найти решение задачи о росте дискообразной трещины в вязко-упругом массиве (вязко-упругий аналог задачи Зака). В случае вязко-упругого аналога задачи Гриффитса для тела Максвелла получена простая формула  [c.12]

Максвелла, Кельвина ), Фойхта ). Здесь следует указать на простейгпие модели вязкоупругой среды Максвелла (рис. 9.3) и Фойхта (рис. 9.4), представляюгцие вязко-упругое тело в виде комбинаций упругих и вязких элементов. Упругий элемент имеет вид пружины с линейной характеристикой, Рис. 9.3 т. е. сг = Ее. Вязкий элемент представля-  [c.212]

Рис. 7. Модели, иллюстрирующие механические свойства тел I — упругое тело с модулем упругости г — вязкая (ньютоновская) жидкость с вязкостью ц 3 — модель Максвелла, соответствующая вязко-упругому телу, деформация к-рого при постоянной нагрузке необратимо возрастает 4 — модель Кельвина — Фойхта, соответствующая телу, обладающему равновесным модулем упругости Рис. 7. Модели, иллюстрирующие механические свойства тел I — <a href="/info/41472">упругое тело</a> с <a href="/info/487">модулем упругости</a> г — вязкая (ньютоновская) жидкость с вязкостью ц 3 — <a href="/info/55727">модель Максвелла</a>, соответствующая <a href="/info/241590">вязко-упругому телу</a>, деформация к-рого при <a href="/info/23976">постоянной нагрузке</a> необратимо возрастает 4 — <a href="/info/244370">модель Кельвина</a> — Фойхта, соответствующая телу, обладающему <a href="/info/358777">равновесным модулем</a> упругости
Первое препятствие на пути ее решения заключается в правильном выборе модели, отражающей свойства резины. Известно, что двухэлементные модели, состоящие из последовательно (тело Максвелла) или параллельно (тело Кельвина—Фойгта) соединенных пружины (элемент Гука) и поршня (элемент Ньютона), плохо описывают поведение реальных полимеров даже качественно. В частности, двухэлементные модели не описывают явления памяти , обнаруживающегося у реальных полимеров. На практике используют трехэлементные и четырехэлементные модели. Для описания упруго-вязких свойств линейных полимеров получила распространение модель Бюргерса (рис. 16, б). Эта модель не дает точного количественного описания релаксационных процессов, но отражает явления мгновенной и запаздывающей упругости, упругого последействия и вязкого течения.  [c.33]


Для отдельных типов песчанистых глин хорошо подходит модель Кельвина-Фойгхта. Тело Гука моделирует упругие свойства песчинок, а тело Ньютона - вязкие свойства собственно глинистой фракции. Свойства глин Подмосковья хорошо описываются при сжатии моделью Кельвина - Максвелла  [c.94]

Классические модели сплошных поглощающих сред были сформированы во второй половине XIX века. В их основе лежит механизм вязких потерь, отсюда и сложившаяся терминология. Позднее эти модели были переосмыслены с позиций формализма линейных систем были также предложены другие механизмы поглощения - упругое последействие (Больцман, в сейсмических приложениях - В. Б. Дерягин и др.), тепловые потери, диссипация упругой энергии на молекулярном уровне (Г. И. Гуревич), и другие. Однако эти теории не смогли дать более полного объяснения многочисленным экспериментальным данным по сравнению с классическими моделями Кельвина и Фойгта (1885, 1890), моделью Максвелла (1865) и моделью стандартного линейного тела. Поэтому именно эти модели и будут рассмотрены в качестве сплошных изотропных неупругих сред. При этом, если в среде и допускаются флюидонасыщенные поры, то, как и в случае аппроксимации моделью сплошной среды пористых идеально-упругих сред, считается, что при распространении волн флюид не смещается относительно твердого скелета, а упругими свойствами среды считаются осредненные свойства агрегата в целом.  [c.109]


Смотреть страницы где упоминается термин Модель вязко-упругого тела Кельвин Максвелла : [c.97]    [c.52]    [c.435]   
Прикладная теория пластичности и ползучести (1975) -- [ c.371 ]



ПОИСК



Вязко-упругие тела

Вязко-упругость

Кельвин

Максвелл

Модели Вязка

Модели вязко-упругих тел

Модель Кельвина

Модель вязко-упругого тела Кельвин

Модель тела Максвелла

Модель упругого тела

Тело Кельвина

Тело Максвелла

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте