Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффективных модулей динамическая теория

Эффективных модулей динамическая теория 355, 358-364 Эффекты старения 129  [c.557]

Принципы соответствия справедливы для композитов независимо от того, учитывается или нет микроструктура материала. Если длины волн, определяющие динамический отклик, много больше характерного размера микроструктуры, то, как было указано выше, можно использовать эффективные модули и податливости композитов при этом плотность р относится к объему, много большему объема элемента микроструктуры, т. е. р представляет собой эффективную плотность материала. Большая часть имеющихся вязкоупругих (упругих) решений для ограниченного тела основывается на теории эффективных характеристик композитов. С другой стороны, большинство существующих результатов, найденных с учетом микроструктуры, относится к стационарным колебаниям в неограниченной среде. Как отмечено выше, в обоих случаях справедливы динамические принципы соответствия, поэтому здесь будут рассмотрены оба решения. В том случае, когда принимается во внимание микроструктура материала при переходе от упругих к вязко-упругим решениям, вместо эффективных характеристик используются характеристики отдельных фаз.  [c.165]


Так как в задачах о распространении волн характерный размер неоднородности деформации имеет первостепенную важность, первой тестовой задачей, из которой можно извлечь информацию о пригодности той или иной теории к исследованию динамического поведения, является задача распространения гармонических волн в бесконечной композиционной среде. Характерным размером здесь является длина волны Л, которая обычно вводится при помощи волнового числа k = 2я/Л. При наличии дисперсии гармонические волны различной длины распространяются с разными скоростями. Теория эффективных модулей непригодна для описания этого факта, так как классическая модель анизотропного континуума не может объяснить явление дисперсии свободных гармонических волн, которое имеет место в композиционной среде достаточной протяженности в том случае, когда длина волны имеет тот же порядок, что и характерный размер структуры. Для слоистой среды,  [c.357]

В разд. IV обсуждаются некоторые приближенные теории, являющиеся улучшенными вариантами теории эффективных модулей. В разд. V проводится обзор экспериментальных данных о распространении волн в направленно армированных композитах и об их колебаниях. В заключительном разделе указываются различные смежные проблемы, такие, как динамические эффекты в хаотически армированных композитах, динамическое разрушение, оптимизация и нелинейные эффекты.  [c.358]

Ограниченность теории эффективных модулей явилась причиной многочисленных попыток построения более современных методов исследования механического поведения направленно армированных композитов, в особенности при динамическом их нагружении. В первом приближении эти методы можно разбить на два следующих класса.  [c.374]

По теории эффективного модуля решается динамическая задача теории упругости для однородной среды  [c.297]

Особенности динамического поведения вязкоупругих материалов можно рассмотреть на примере однородного вязкоупругого стержня (теория эффективного модуля). Уравнение движения такого стержня имеет вид  [c.299]

Большая часть главы посвяш,ена обзору литературы по исследованию вязкоупругого поведения композиционных материалов, в частности новейшим направлениям исследований. Приводятся некоторые новые результаты, касающиеся определения верхней и нижней границ эффективных комплексных модулей и податливостей, а также анализа динамического поведения композитов описывается простой метод обобщения решений динамических задач теории упругости с учетом микроструктуры на задачи вязкоупругости.  [c.103]


Средства верификации служат для оценки эффективности исполнения разрабатываемых программ и определения наличия в них ошибок и противоречий. Различают статические и динамические анализаторы. В статических анализаторах ПО исследуется на наличие неопределенных данных, бесконечных циклов, недопустимых передач управления и т. п. Динамический анализатор функционирует в процессе исполнения проверяемой программы при этом исследуются трассы, измеряются частоты обращений к модулям и т. п. Используемый математический аппарат — сети Петри, теория массового обслуживания.  [c.247]

Имея разложения (38) — (39), вычисляем энергию деформации и кинетическую энергию для каждой отдельной ячейки. Последующее осреднение по ячейке дает среднюю энергию, полностью определяемую своим значением в центре волокна. После этого осуществляется завершающий этап перехода от системы дискретных ячеек к однородной континуальной модели, который состоит во введении полей кинематических и динамических переменных, непрерывных по всем координатам. Значения этих переменных на средних линиях волокон совпадают со значениями соответствующих параметров, вычисленными для системы дискретных ячеек. Следовательно, кинетическую энергию и энергию деформации, подсчитываемые так, как это описано выше, можно интерпретировать как плотности энергий для вновь введенной непрерывной и однородной среды. Плотность энергии деформации содержит не только члены, зависящие от эффективных модулей, но и члены, зависящие от некоторых констант, включающих характеристики как физических, так и геометрических свойств компонентов композита (т. е. от эффективных жесткостей ). Этим и объясняется название теории — теория эффективных жесткостей . Определяющие уравнения этой теории были получены при помощи принципа Гамильтона в совокупности с условиями непрерывности и с использованием множителей Лагранжа. Аналогичная теория для композитов, армированных упорядоченной системой прямоугольных волокон, была разработана Бартоломью и Торвиком [11].  [c.377]

Деформирование и прочность композитных материалов (КМ) определяется их геометрической структурой, физико-механическими свойствами наполнителя и связующего, качеством адгезионного соединения компонент (фаз) [1-5]. Влияние технологии изготовления конструкции из КМ может проявляться также в возникновении остаточных напряжений [2, 5]. Не все эти факторы в силу разных причин в достаточной мере учитываются в теоретических механических моделях КМ. Наиболее развитой моделью КМ является континуальная теория первого порядка (теория эффективных модулей), в которой неоднородная структура заменяется квазиоднородной средой с приведенными характеристиками, определяемыми через параметры реальной структуры. Такой подход позволяет решить широкие классы важных задач механики КМ для слабоградиентных по сравнению с характерными размерами структуры динамических процессов (длинные волны, низкочастотные колебания и др.). Присущие КМ с регулярной структурой особенности колебаний и распространения волн могут быть описаны только в рамках структурной (кусочно-однородной) модели. Такой подход развивается в настоящей работе. Наряду с геометрической дисперсией, обусловленной неоднородностью структуры КМ, анализируется также диссипативная дисперсия, обусловленная вязкоупругими свойствами компонент. На феноменологическом уровне учитывается также влияние несовершенств адгезионного межфазного соединения и остаточных технологических напряжений на характеристики распространения волн в слоистых КМ.  [c.819]


Смотреть страницы где упоминается термин Эффективных модулей динамическая теория : [c.356]   
Механика композиционных материалов Том 2 (1978) -- [ c.355 , c.358 , c.364 ]



ПОИСК



Модуль динамический

Модуль эффективный

Теория динамическая

Теория эффективного модуля



© 2025 Mash-xxl.info Реклама на сайте