Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние иа системе связанных атомов

Следовательно, дифференциальные сечения для свободных и связанных атомов обычно не одинаковы. Соотношение между ними можно вывести следующим образом. Пусть ( х ) — дифференциальное сечение рассеяния на свободном атоме, где х — косинус угла рассеяния в системе центра инерции. Аналогично пусть Oj, ( х) — дифференциальное сечение рассеяния на связанном атоме, где х — косинус угла рассеяния в лабораторной системе координат. Поскольку, как отмечалось выше, оба типа рассеяний изотропны, то  [c.252]


Для нейтронов низкой энергии, т. е. - 1 или ниже, возбуждение ядра как целого, конечно, невозможно при рассеивающем столкновении. Однако ядро (или атом), связанное в молекуле, находится в системе, которая имеет дискретные квантовые энергетические состояния, обусловленные колебаниями атомов в молекуле и вращением молекулы как целого. При столкновении нейтрона. даже низкой энергии, с ядром, связанным в молекуле, или с молекулой как целым могут произойти изменения колебательных или вращательных (или обоих) квантовых состояний из-за потери или приобретения энергии. Такое столкновение можно было бы, таким образом, описать как неупругое рассеяние. При упругом рассеянии низкоэнергетического нейтрона колебательные и вращательные энергетические уровни молекулы не меняются, но молекула как целое испытывает отдачу, так что выполняется закон сохранения энергии и импульса. Однако, в связи с тем что молекула имеет кинетическую (тепловую) энергию, для нейтрона существует возможность приобрести энергию при упругом рассеянии.  [c.251]

Подробные расчеты закона рассеяния нейтронов в системах связанных атомов обычно начинаются с вычисления промежуточных функций рассеяния Хког (х. О и Хнеког (х, 0. определенных уравнениями (7.45) и (7.46). Эти функции можно рассчитывать на основе квантовомеханического  [c.269]

К тому же и на этом пути возникает дополнительная трудность, в какой-то мере случайного характера, обязанная своим происхождением свойству короткодействия ядерных сил. В теории атома, даже не имея квантовой электродинамики, мы могли бы довольно точно определить потенциал взаимодействия двух зарядов по данным о задаче двух тел, изучая систему энергетических уровней атома водорода. Как известно, атом водорода имеет богатую систему уровней, по которой можно восстановить многие, даже очень тонкие детали электромагнитного взаимодействия. В противоположность этому получение явного вида действующих между нуклонами ядерных сил по экспериментальным данным о задаче двух тел является значительно более тяжелой задачей. Объясняется это тем, что в системе нуклон — нуклон имеется всего лишь одно связанное состояние — дейтрон, а одна цифра — это очень небольшая информация о виде сил взаимодействия. Можно, конечно, воспользоваться экспериментальными данными о нуклон-нуклонном рассеянии, но данные по рассеянию всегда несравненно менее точны, чем данные об экспериментальных уровнях. Кроме того, даже по полной и точной совокупности экспериментальных данных о рассеянии и связанных состояниях точный вид сил может быть установлен однозначно лишь тогда, когда эти силы не зависят от скоростей, что для ядерных сил не имеет места.  [c.80]


Формулировка законов перераспределения зависит от того, какой системе рассматривается рассеяние. Самые простые закону получаются в системе, связанной с поглощающим и излучаюцщ атомом. После их формулировки следует перейти в систему, связан ную с атомным газом как целым, т. е. сопутствующую, и усреднить по распределению атомных скоростей. Наконец, если газ участвует в макроскопическом движении, то необходимо перейти в систему отсчета наблюдателя.  [c.146]

Химические, физико-химические и биохимические воздействия, которые отнесены не к операциям III, а к операциям VII, поскольку они в большинстве случаев (за исключением титрометрических методик) предшествуют процедуре измерений, приводят также к самым различным физическим эффектам механическим — изменениям объема, давления, упругости, масс различных частей жидкостной системы, скорости, коэффициента поглощения и дисперсии звука тепловым — изменениям температуры оптическим — изменениям оптической плотности, коэффициентов рассеяния и отражения, оптической активности, двойного лучепреломления, спектральных характеристик люминесценции и света, прошедшего через среду, изменениям дисперсии света электрическим — изменениям пассивных электрических характеристик среды, их дисперсии, эффектам, связанным с изменениями ЭДС гальванических элементов и диффузионных потенциалов магнитным — изменениям магнитной проницаемости радиационным и радиационно-химическим — появлению радиоактивности и возникновению химических реакций изотопного обмена в результате введения в исследуемую пробу изотопных индикаторов (так называемых меченых атомов).  [c.34]

В заключение следует отметить, что сечение рассеяния связанного ядра оказывается больше, чем сечение рассеяния свободного ядра. Причина этого очевидна из следующих рассмотрений. Для свободного атома нейтроны рассеиваются изотропно в системе центра инерции нейтрона и изолированного рассеивающего атома. Если атом связан в молекуле, так что молекула как целое испытывает отдачу при упругом рассеянии, а неупругое рассеяние отсутствует, то рассеяние нейтрона вновь будет изотроп ным в системе центра инерции. Но последняя система включает в себя теперь нейтрон и молекулу, содержащую рассеивающий атом. Если масса молекулы относительно веника  [c.251]

ШРЁДИНГЕРА ОПЕРАТОРА СПЕКТР —множество собств. значений оператора Шрёдингера (ОШ) H=t+V, где Н—гамильтониан — оператор полной энергии системы (в том случае, когда П01енциал не зависит от времени), f и V—операторы кинетич . и потенц. энергий. В случае локальных сил оператор V является ф-цией координат V r). Ш. о. с. определяет все свойства квантовых систем и может быть дискретным (энергии связанных состояний— ядер, молекул, атомов и т. д.) и (или) непрерывным (энергии состояний рассеяния, к к-рым относятся и квази-стационарные—распадные, резонансные состояния).  [c.469]

Кажется, что возможность нахождения асимметричного максимума в элементах из более высоких групп и низких периодов Периодической системы выше в этих элементах связь в твердом состоянии преимущественно неметаллическая [47]. Все это наводит на мысль, что такое поведение связано с сохранением в жидком состоянии определенной доли ковалентной или гомеополярной связи. Эта связь, возможно, присутствует в виде кратковременной локализации валентных электронов в связанном состоянии между парами или группами соседних атомов, возможно, в процессе резонансной гибридизации как рассматривалось Полингом [48]. Получающаяся в результате этого структура становится устойчивее за счет относительной стабильности и направленности неполярной связи. Эта преимущественно ковалентно связанная структура может существовать небольшими комплексами или островками в металлически связанной матрице . Если это так, то пространственное расположение атомов в пределах самих комплексов, возможно, будет одинаково, но совершенно отлично от более неупорядоченного расположения атомов в металлической матрице (к сожалению, невозможно определить пространственное расположение атохмов из данных по рентгеновскому рассеянию).  [c.22]

Для нелинейных воснриимчивостей х имеется лишь одна общая закономерность, связанная с симметрией среды, В симметричных средах (т. е. в средах с центром инверсии), к которым относятся все атомы в основном состоянии, пространственно симметричные молекулы и другие квантовые системы, нелинейные восприимчивости в случае, когда начальное и конечное состояния одни и те же q = n), прн четных степенях поля (х ° ) тождественно равны нулю. На языке рассеяния света это очевидное утверждение, так как в соответствии с правилами отбора для дипольных переходов в результате поглощения четного числа квантов четность начального и конечного состояний остается неизменной, и тем самым квантовая система не может вернуться из конечного в начальное состояние путем однофотоннон спонтанной релаксации. Таким образом, в большом классе сред с центром инверсии не равны нулю лишь иелпиейиые восприимчивости при нечетных степенях поля (х ")- Соответственно в таких средах первой (низшей) нелинейной восприимчивостью является не квадратичная восприимчивость х ° , а кубичная восприимчивость (Для таких сред часто пспользуется термин кубичные среды.)  [c.26]


Яв.тение дифракции возникает, когда падающие рентгеновские лучи вызывают возбуждение системы электронов, в результате чего эти электроны становятся вторичными источниками излучения. Если все рассеянные лучи имеют одну и ту же длину волны, то элементарные волны, исходящие от различных рассеивающих центров, интерферируют. Во всякой системе могут существовать несколько различных источников рассеяния. Рассеяние на совокупностях электронов, образующих атомы, вызывает дифракционные эффекты, типичные для одноа[томного газа при низких плотностях. При рассеянии на одноатомной жидкости в интерференционной картине появляется дополнительный вклад, связанный с относительным распределением отдельных атомов. В молекулярных жидкостях имеется третий источник рассеяния кроме структуры атома и относительного распределения молекул, на дифракционную картину влияет также фиксированное взаимное расположение атомов в молекуле.  [c.11]

ХАРАКТЕРИСТИЧЕСКИЕ ЧАСТОТЫ (групповые частоты) — частоты колебательного спектра, мало изменяющиеся для ряда молекул, содержащих одну и ту же химич. группу, и тем самым как бы характеризующие эту химич. группу. Сформулированное здесь качественное понятие X. ч. возникло при рассмотрении экспериментальных спектров комбинационного рассеяния света. Теоретич. подход к X. ч. основан на изучении специфики соответствующих им нормальных колебаний молекул. Норм, колебание представляет собой такое колебат. движение молекулы (как классической механич. системы), при к-ром все атомы совершают периодич. движения с одпой и той же частотой (в системе координат, жестко связанной с равновесной конфигурацией молекулы). Каждому порм. колебанию соответствует не только определенная частота, но и определенная форма, т. е. определенное соотношение между изменениями обобщенных координат в процессе колебания. Это приводит к необходимости введения раздельных понятий характеристичности по частоте и характеристичности по форме для иек-рой химич. группы (точнее для совокупности внутренних координат, ей соответствующей).  [c.372]


Смотреть страницы где упоминается термин Рассеяние иа системе связанных атомов : [c.252]    [c.28]    [c.74]    [c.121]    [c.441]   
Теория ядерных реакторов (0) -- [ c.250 , c.252 , c.266 , c.269 ]



ПОИСК



Мир атома

Мод связанность

Р связанное

Рассеяние атомами

Система атома

Система рассеяния

Система связанная



© 2025 Mash-xxl.info Реклама на сайте