Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Главные скорости света в кристалле

Здесь введены обозначения аж=с/Уех, ау — с1 гу, йг= = с/Уб7, которые называются главными скоростями распространения света в кристалле. Уравнение (17.14) называется уравнением Френеля для фазовой скорости света в кристалле.  [c.44]

Уравнение (10.19) называется уравнением волновых нормалей Френеля и позволяет определить скорость по нормали в зависимости от направления нормали N, заданного Nx, N у, N,, и от свойства кристалла, заданного главными скоростями y.v, Vy, или главными диэлектрическими проницаемостями е, ., е.у, t%. Отметим, что v, , (л — скорости света в случае, когда колебания вектора электрической индукции совершаются по главным диэлектрическим осям, а Уд/ — скорость световой волны для произвольного направления, но перпендикулярной фронту волны вектора D и, следовательно, направленной по нормали N.  [c.252]


Эллипсоид Френеля и служит, как показал Френель, для определения с помощью следующего построения лучевых скоростей и и и" по любому направлению в кристалле. Проведем сечение эллипсоида, перпендикулярное к направлению 5, вдоль которого распространяется свет (рис. 26.5). Сечение это, вообще говоря, будет иметь форму эллипса, главные оси которого и 8 5 взаимно перпендикулярны. Направления этих осей дают направление колебания вектора Е двух волн, поляризованных взаимно перпендикулярно и распространяющихся вдоль 05, а длины полуосей (05 = о 05" = и") — лучевые скорости этих двух волн, отнесенные к скорости света в вакууме с.  [c.502]

Скорость распространения света в кристаллах зависит от направления луча и от направления колебаний в этом луче, т. е. от поляризации. Поэтому в кристаллах наблюдается явление двойного лучепреломления. Луч, падающий на кристалл, разделяется на два луча, поляризованные в двух главных направлениях пластинки (по ее кристаллической оси и перпендикулярно этой оси) и распространяющиеся с разными скоростями. Пройдя через пластинку, лучи сдвинутся по фазе и будут различны по  [c.228]

Величины Оа называются главными скоростями распространения света в кристалле. Наряду с главными скоростями, для характеристики оптических свойств кристаллов пользуются также главными показателями преломления, которые определяются выражениями  [c.496]

Пусть свет определенной длины волны, прошедший через поляризатор П и ставший линейно поляризованным, падает на кристаллическую пластинку К толщиной d, вырезанную из одноосного кристалла параллельно оптической оси (рис. 18.1). Сквозь пластинку будут распространяться по одному направлению, но с разной скоростью два луча, поляризованных в двух взаимно перпендикулярных направлениях, которые принято называть главными направлениями кристаллической пластинки. В одном из этих лучей электрические колебания направлены вдоль оптической оси, т. е. по АА (необыкновенный луч с показателем преломления Пе), в другом — перпендикулярно к оси, т. е. по ВВ (обыкновенный луч с показателем преломления По).  [c.50]

Рассмотрим условия возникновения эллиптической поляризации при прохождении света через одноосный кристалл. Пусть на пластинку /С, вырезанную параллельно кристаллической оси, падает параллельный пучок линейно-поляризованного света (рис. 27.1, а). После входа пучка в пластинку возникает два луча, поляризованные во взаимно перпендикулярных плоскостях, которые будут распространяться в направлении, перпендикулярном к оптической оси с разными скоростями. Амплитуды колебаний для обыкновенного uq и необыкновенного лучей являются проекциями амплитуды падающего света на главные направления кристалла XwY (рис. 27.1, б). Как видно из рис. 27.1, б, для амплитуд и будем иметь  [c.207]


Поляризационные явления в одноосных кристаллах. Оптическая ось одноосного кристалла характеризует направление, при распространении в котором луч света ведет себя как в изотропной среде, т. е. распространяется в среде П1ЭИ любой поляризации с одной и той же скоростью (при данной частоте). Однако при неколли-неарности луча и оси одноосного кристалла ситуация существенно изменяется. Через луч, направленный под углом к оптической оси, и оптическую ось можно провести плоскость, называемую главной (рис. 18). В этом направлении возможными являются лишь лучи света, вектор напряженности электрического поля которых колеблется либо в главной плоскости ( необыкновенный луч), либо перпендикулярно главной плоскости ( обыкновенный луч). Скорость необыкновенного луча зависит от угла между лучом и оптической осью скорость обыкновенного луча одинакова по всем направлениям (поэтому он и называется обыкновенным). Если луч света падает на плоскую поверхность одноосного кристалла, вырезанного параллельно оптической оси по нормали к поверхности (рис. 19), то в кристалле распространяются два пространственно совпадающих луча с взаимно перпендикулярными направлениями линейной поляризации. При угле падения, отличном от нуля (рис. 20), происходит преломление каждого из лучей в соответствии со скоростью распространения света в кристалле, т. е. при показателе преломления п = /v, где с-скорость света в вакууме, у-скорость света в кристалле. Поэтому после преломления обыкновенный и необыкновенный лучи имеют различные направления и начинают пространственно разделяться, т.е. падающий луч испытывает  [c.34]

Пусть из некоторой точки внутри кристалла распространяется свет по разным направлениям. Если по любому выбранному направлению отложить из этой точки отрезки, равные Vst и v st (где t — время распространения света внутри кристалла, us и ws — лучевые скорости по данному направлению), то геометрические места концов этих отрезков для разных направлений образуют двухполостную, так называемую лучевую, поверхность. Она, вообш,е говоря, имеет сложный вид, и поэтому ее рассмотрение производят в основном по трем ее главным сечениям, нормальным к главным осям лучевого эллипсоида. Двухполостная лучевая поверхность обладает в общем случае четырьмя точками встречи внешней и внутренней полости. Две прямые линии, соединяющие эти четыре точки попарно и расположенные симметрично относительно главных направлений кристалла (рис. 10.8), обладают особым свойством — вдоль каждого из них свет распространяется с единственной для данного направления лучевой скоростью. Эти две линии являются оптическими осями первого рода.  [c.257]

В некоторых случаях, когда требуется быстрая модуляция интенсивности излучения, используются ячейки Поккельса. Основным элементом ячейки является одноосный кристалл (КДР, АДР и др.). Луч света направляется по оптической оси кристалла при этом оба луча — обыкновенный и необыкновенный — распространяются в кристалле с одной и той же скоростью. При приложении к кристаллу электрического поля вдоль оптической оси кристалл становится двуосным с главными осями ох и оу, составляющими угол 45° с кристаллографическими осями ох и оу (рис. 45). Скорость распространения в нем двух волн, поляризованных во взаимно перпендикулярных плоскостях, проходящих через ох и ог/, оказывается различной. Когда на кристалл падает линейно-поляризованный свет, плоскость поляризации которого совпадает с ох, то в кристалле распространяются две взаимно перпендикулярно поляризованные компоненты с различными скоростями v-y и Uj. Пройдя некоторый путь, они приобретают разность фаз, зависящую от приложенного к кристаллу напряжения, вследствие чего на выходе из кристалла свет становится эллипти-чески-поляризованным, причем эксцентриситет эллипса поляризации зависит от разности фаз, т. е. от приложенного напряжения. Пропуская затем модулированный таким образом свет через поляризационную призму, получают лазерный луч, модулированный по амплитуде, т. е. по интенсивности.  [c.73]

Иногда встречаются кртсталлы, в которых равны два главных показателя преломления, т.е. i, j = х, у или z. В таких кртсталлах может наблюдаться некритический к угловым расстройкам, или 90-гралус-ный, синхронизм. В случае одноосного кристалла равенство двух главных показателей преломления означает, что соответствующие поверхности индексов для со и 2 со касаются друг друга. В результате синхронизм некритичен к любым угловым расстройкам вследствие близости фазовых скоростей волн разных частот вблизи точки касания. Поверхности индексов двуосных кристаллов имеют более сложную форму. При выполнении указанных выше условий синхронизм оказывается нечувствительным к изменению направления распространения света в одаой плоскости и чувствительным в другой.  [c.155]


КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

Схема типичной установки для измерения Хцк первым способом дана на рис. 23. Излучение одного и того же источника направляется на образец и эталон измеряется мощность второй гармоники после прохождения каждого кристалла. Толщина кристаллов, вырезанных в виде плоскопараллельных пластин, меняется за счет медленного вращения (со скоростью 1-20°С/мин). Чаще всего в качестве источника света используется импульсный лазер, но может быть использован и непрерьшный лазер с внешним модулятором [141]. Точность определения этим методом зависит главным образом от качества изготовления и обработьси поверхности кристалла. 7 и /<. могут быть измерены с точностью 1—2%. Если поверхность кристалла обработана с точностью до X, погрешность измерения Хцк может не превышать 2-3%. Так как молекулярные кристаллы пока не удается обрабатьшать с такой тщательностью, наибольшая точность достигнутая при измерении Х к составляет 5%.  [c.88]

Характер взаимодействия световых электромагнитных волн с диэлектриком (преломление света, отражение, скорость прохождения и пр.) определяется взаимодействием света с заряженными частицами диэлектрика, которые под действием электрического поля световой волны смещаются и колеблются. Степень смещения этих частиц в свою очередь характеризует поляризуемость вещества, описываемую величинами а (поляризуемость) или е (диэлектрическая проницаемость). В результате поляризации вещества во внеишем поле меняется свобода подвижности частиц, а значит, и его оптические свойства. Говоря об оптических свойствах, прежде всего надо иметь в виду показатель преломления света п. В видимой части спектра взаимодействие света с веществом осуществляется главным образом через электроны. Поэтому связь между величинами е (или а) и /г для этой части спектра сравнительно проста для веществ, обладающих только электронной поляризацией (таковы кристаллы алмаза, стекло, плексиглас и др.). В этом случае соотношение мен<ду е и я имеет вид  [c.187]


Смотреть страницы где упоминается термин Главные скорости света в кристалле : [c.368]    [c.745]    [c.44]    [c.255]    [c.238]    [c.144]    [c.390]    [c.28]   
Общий курс физики Оптика Т 4 (0) -- [ c.496 ]



ПОИСК



Скорость главная

Скорость света



© 2025 Mash-xxl.info Реклама на сайте