Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Каноническая замкнутая состояния равновесия

Используя указанное выше разделение круга С на криволинейные секторы различных типов, мы построим некоторую область вокруг состояния равновесия, которую будем называть его канонической окрестностью. Граница этой окрестности является простой замкнутой кривой, состоящей из конечного чис.ла дуг траекторий и дуг без контакта, и называется канонической кривой.  [c.349]

Рассмотрим замкнутую каноническую окрестность Й состояния равновесия О и ограничивающую ее каноническую кривую Е.  [c.358]


Лемма 2. Всякая неособая незамкнутая траектория целиком лежащая в С ), которая не является петлей траектории, содержащейся в замкнутой канонической окрестности какого-нибудь состояния равновесия, пересекает в точности одну т-дугу или один свободный ьз-цикл и в точности одну а-дугу или свободный а-цикл.  [c.460]

Выберем Г() > О настолько малым, чтобы условия 1) и 2) выполнялись, и построим каноническую замкнутую кривую Е состояния равновесия О, проходящую через точки Р ,. . ., Рп (рис. 345). При этом в качестве седловых дуг без контакта возьмем достаточно малые дуги окружности Сд. Существование кривой Е, удовлетворяющей указанным условиям, показано в 19, п. 2.  [c.560]

Гиббсом — основоположником статистической механики. Фундаментальное достижение Гиббса состоит в том, что он показал, каким образом средние величины характеристик системы как целого могут быть получены при исследовании распределения этих характеристик в данный момент времени среди произвольного, но очень большого числа идентичных систем. Он назвал большое число идентичных систем ансамблем. Системы ансамбля распределены по различным возможным состояниям, причем возможное состояние — это любая из произвольных конфигураций, которые может принимать система. Тогда вероятность найти реальную систему в некотором определенном состоянии соответствует вероятности найти системы ансамбля в этом же состоянии. Таким образом, средние по времени значения для реальной системы соответствуют средним по ансамблю в ансамбле Гиббса. Гиббс показал, что система в замкнутом объеме, находящаяся в тепловом равновесии с тепловым резервуаром, может быть описана так называемым каноническим ансамблем, в котором вероятность Р(Е)йЕ найти систему, имеющую энергию в интервале между Е и Е + йЕ, определяется формулой  [c.21]

Задача 8. Вывести каноническое распределение по микроскопическим состояниям w e,V,a,N), полагая, что рассматриваемая система вместе с находящимся с ней в равновесии термостатом образует замкнутую систему (рис. 22), распределение по микросостояниям для которой является микроканоническим.  [c.88]

Кривая Е называется канонической замкнутой кривой состояния раеновесия О, а область Н внутри этой кривой—канонической окрестностью состояния равновесия О. В дальнейшем мы В основном будем 2од рассматривать замкнутую каноническую окрестность Н (рис. 209).  [c.351]

Правильные системы канонических окрестностей. В дальнейшем мы будем по преимуществу рассматривать замкнутые канонические окрестностп gi и Yi- При произвольном выборе канонических окрестностей канонические окрестности различных состояний равновесия, а также канонические окрестности состояний равновесия и предельных континуумов.  [c.454]


Принимая во внимание, что каноническая кривая состояния равновесия может быть циклом без контакта лишь в случае, когда состояние равновесия есть узел, а также в силу леммы 1 25 нетрудно видеть, что 1) внутренний континуум Кы является либо узлом, либо простой замкнутой кривой (в частности — замкнутой траекторией), либо составлен из нескольких простых замкнутых кривых легкащих одна вне другой (если не считать их общих точек) 2) внешний континуум К К а) либо является простой замкнутой кривой (в частности — замкнутой траекторией), либо состоит из нескольких простых замкнутых кривых и тогда одна из этих замкнутых кривых, о, содержит внутри нее остальные, лежащие одна вне другой. Если К - и К - — два сопряженных предельных континуума, то, очевидно, внутренний континуум К лежит внутри кривой о внешнего континуума К -  [c.465]

Вид функции статистического распределения задается аксиомой, постулатом статистической физики, имеющим свое оправдание в том, что все следствия из него подтверждаются экспериментально. При этом различают два подхода. При первом рассматривается ансамбль, состоящий из одинаковых систем с равными энергиями, т. е. рассматривается вероятность различных состояний замкнутой системы, находящейся в равновесии. Ансамбль в этом случае называют микрока-ноническим и распределение — микроканоническим. При втором подходе рассматривается ансамбль из квазинезависимых подсистем замкнутой системы, находящейся в состоянии равновесия. Члены ансамбля различаются и по энергии, т. е. изучаются вероятности микросостояний квазинезависимой подсистемы при разных энергиях. Ансамбль в этом случае называют каноническим и распределение — каноническим.  [c.41]

Теорема 61. Если локальные схемы двух состояний равновесия О и О тождественны с сохранением ориентации и шправления по I, то существует топологическое отображение любых их замкнутых канонических окрестностей Н и Н друг на друга, при котором траектории переводятся в траектории и сохраняется ориентация и направление по 1.  [c.355]

Пусть, далее, К . . ., АУ (К) — все (односторонние) предельные континуумы динамической системы D, отличные от состояний равновесия, расположенные в G, Yj, Ysi > (y) — их канонические окрестности, i, С2, - - -, jf (С) — соответствующие канонические кривые континуумов (К) каждая кривая Сг является либо циклом без контакта, либо замкнутой траекторией и вместе с предельным континуу-мом Ki составляет границу канонической окрестности уг-  [c.454]

Доказательство. Докажем сначала, что условие а) всегда может быть выполнено. По определенгпо нормальной гранщы входящие в нее дуги траекторий, а следовательно, и их продолн ения — угловые дуги не могут принадлежать орбитно-неустойчивым траекториям или полутраекториям, целиком лежащим в С. На границе не лежит, в частности, ни одно состояние равновесия. Множество Е, состоящее пз точек, принадлежащих граничным и угловым дугам, очевидно, является замкнутым множеством. Любое состояние равновесия 0 находится, следовательно, на ненулевом расстоянии от него, и всякая каноническая окрестность, содержащаяся в достаточно малой 11 (О,), очевидно, не имеет общих точек с множеством Е.  [c.455]

Рассмотрим теперь предельный континуум К , не являющийся состоянием равновесия. Ни одна точка границы области пли угловой дуги не может быть точкой предельного континуума, за исключением лишь одного случая, когда граничная замкнутая кривая является орбитно-устойчивой замкнутой траекторией и когда состоящая из граничных и угловых дуг замкнутая траектория является граничным континуумом некоторой ячейки т, заполненной замкнутыми траекториями (см. 24, п. 1). Но в зтом случае канонической кривой континуума К является любая замкнутая траектория ячейки т, а такая траектория, а также соответствующая каноническая окрестность, состоящая из точек ячейки ш, очевидно, не имеет общпх точек с множеством Е. Во всех же других случаях предельный континуум К состоит из орбитно-неустойчивых траекторий и находится на неравном нулю расстоянии от множества Е. А тогда, очевидно, всякая каноническая окрестность этого континуума К 1, лежащая вместе с ограничивающей ее канонической кривой в 11 при достаточно малом е > О не имеет общих точек с множеством Е.  [c.455]


Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]

Каноническое распределение Гиббса (см. 7) обобш,ается на системы с переменным числом частиц. Предположим, что исследуемая система и термостат находятся не только в тепловом, но еш,е и в диффузионном контакте, т. е. обмениваются не только энергией, но и частицами. Оба вида взаимодействия происходят одновременно и имеют неупорядоченный, хаотический характер. Весь комплекс в целом считается замкнутым и находяш,имся в состоянии термодинамического равновесия. Внешние параметры системы постоянны, температура термостата не меняется, сохраняется полное число частиц N и суммарная энергия комплекса Е.  [c.106]


Смотреть страницы где упоминается термин Каноническая замкнутая состояния равновесия : [c.437]    [c.495]    [c.457]    [c.466]   
Качественная теория динамических систем второго порядка (0) -- [ c.351 ]



ПОИСК



Вид канонический

Состояние равновесия

Ц замкнутый



© 2025 Mash-xxl.info Реклама на сайте