Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аустенит влияние легирующих элементов на .устойчивость

Влияние легирующих элементов на устойчивость аусте нита не аддитивно, т е при наличии в аустените несколь ких элементов их действие не суммируется, а может очень существенно изменяться Так, наиболее сильный эффект повышения устойчивости аустенита наблюдается при та ких композициях легирования, как Сг—Ni, Сг—Ni—Мо, Сг—Мп, Сг—Мп—V и др, причем соотношение легирую  [c.87]

Влияние легирующих элементов на устойчивость аустенита детально изучено С. С. Штейнбергом, В. И. Зюзиным, В. Д. Садовским. Все элементы, растворенные в аустените, повышают его устойчивость. Это наиболее наглядно можно отметить на кри-  [c.267]


Влияние легирующих элементов на перлитное и промежуточное, превращения аустенита. Легирующие элементы оказывают весьма существенное влияние на верхнюю часть диаграммы изотермического превращения аустенита. Никель, кремний, марганец и другие элементы, растворяющиеся в феррите, повышают устойчивость аустенита и сдвигают вправо кривые начала превращения (фиг. 184, а). Кобальт представляет исключение среди элементов, растворяющихся в феррите, — он понижает устойчивость аустенита и сдвигает кривую начала превращения влево. Хром, молибден, вольфрам и другие элементы-карбидообразователи вызывают на кривых начала превращения два выступа (фиг. 184, б). Т ри этом верхний выступ кривой начала перлитного превращения сдвигается вправо, а нижний выступ промежуточного превращения сдвигается или влево, или вправо, но в меньшей степени, чем в перлитном превращении. Это указывает, что элементы-карбидообразователи значительно меньше тормозят промежуточное превращение. Это объясняется тем, что во время перлитного превращения атомы легирующих элементов, присутствуя как в аустените, так и в специальных карбидах и заполняя собой дислокации, тормозят диффузию.  [c.309]

Растворимость легирующих элементов в железе зависит в основном от атомного объема и атомного строения элемента, а также от типа и параметра атомно-кристаллической решетки. Лучшей растворимостью в железе обладают те элементы, которые имеют атомный объем, близкий к атомному объему железа. Такие элементы образуют однородные твердые растворы. Чем ближе тип и параметры кристаллической решетки растворимого элемента подходят к типу и размерам решетки Fe-растворителя, тем лучше такой элемент растворяется в ot-Fe или 1>-Ге. Образуя твердые растворы, легирующие элементы в той или иной степени искажают кристаллическую решетку железа, упрочняя таким образом феррит или аустенит. Основные легирующие элементы по убывающей способности упрочнять феррит можно расположить в следующий ряд Si, Mn, Ni, Mg, V, W, r. Введение легирующих элементов чрезвычайно сильно изменяет также температуру перехода железа из одной модификации в другую под влиянием одних элементов критические точки железа А3 и А4 сближаются, под влиянием других - расходятся, т.е. происходит сужение или расширение области температур устойчивого состояния твердого раствора l>-Fe. Поэтому все элементы, применяемые для легирования стали, по влиянию на критические точки железа делят на две группы в зависимости от того, расширяют или сужают они область твердого раствора y-Fe на диаграмме состояний системы Fe - элемент. Ni, u, Mn, Со, С, N расширяют область твердого раствора y-Fe. r, Al, Si, W, Mo и другие элементы относят к группе элементов, замыкающих область твердого T-Fe.  [c.77]


Чем больше скорость охлаждения при закалке, тем больше прокаливаемость. Однако всегда скорость охлаждения поверхностных слоев закаливаемой детали (образца) выше скорости охлаждения сердцевины. Поэтому влияние термической обработки оказывается более значительным для поверхностных слоев, чем для нижележащих участков, в которых аустенит в процессе охлаждения при закалке распадается на феррито-карбид-ную смесь. Для сердцевины деталей большого сечения улучшающее влияние термической обработки может проявиться в результате неполной прокаливаемости в небольшой степени или даже не проявиться срединные слои металла могут сохранить почти без изменения структуру и свойства, которые они имели до закалки. Если в аустените присутствуют легирующие элементы, то о<ни повышают его устойчивость против распада при более медленном охлаждении, особенно в перлитной области. Это позволяет получить структуру мартенсита или троостит + мартенсит на значительно большей глубине или даже по всему сечению детали (в зависимости от ее размеров и содержания легирующих элементов в твердом растворе). Устойчивость аустенита возрастает также с увеличением размеров его зерна. Повышение температуры нагрева для закалки вызывает рост зерна аустенита и дополнительно повышает прокаливаемость. Однако рост зерна понижает ударную вязкость, что ограничивает возможность повышения прокаливаемости за счет значительного повышения температуры закалки.  [c.201]

Остаточный аустенит может перейти в мартенсит или другие структуры при от-п ске или обработке холодом . При обработке холодом остаточный аустенит превращается только в мартенсит и это не сопровождается изменением концентрации и разложением самого мартенсита. При такой обработке, а по последним данным, и при отпуске следует учитывать явление стабилизации аустенита (при остановке охлаждения). Легирующие элементы по их влиянию на устойчивость аустенита при отпуске располагаются в основном в том же порядке, что и при закалке наиболее сильно влияет марганец, затем идут хром, никель и др. Кремний также значительно увеличивает устойчивость аустенита при отпуске.  [c.564]

Все легирующие элементы уменьшают склонность аустенитного зерна к росту. Исключением является марганец и бор, которые способствуют росту зерна. Количественное влияние остальных элементов, измельчающих зерно, сильно разнится друг от друга. Никель, кобальт, кремний, медь (элементы, не образующие карбиды) относительно слабо влияют на рост зерна. Хром, молибден, вольфрам, ванадий, титан сильно измельчают зерно (элементы перечислены в порядке возрастания их действия), что является прямым следствием различной устойчивости карбидов (и нитридов) этих элементов. Избыточные карбиды, не растворенные в аустените, препятствуют росту аустенитного зерна (см. теорию барьеров — гл. X 2). Поэтому сталь, при наличии хотя бы небольшого количества нерастворимых карбидов, сохраняет мелкозернистое строение при весьма высоких температурах нагрева.  [c.256]

Взаимодействие легирующих элементов с железом и углеродом. С железом легирующие элементы образуют как у> так и а-твердые растворы, т. е. они могут входить в состав аустенита и феррита, упрочняя их. При этом легирующие элементы оказывают различное влияние на устойчивость аустенита одни (например, никель) расширяют этот интервал и при достаточном массовом содержании определяют аустенит устойчивым даже при комнатной температуре (такие стали называют аустенитными). Другие (например, хром) уменьшают устойчивость аустенита и могут совсем устранить аустенитное превращение при достаточном содержании таких элементов (например, более 13 % Сг) аустенита не существует и сталь вплоть до плавления остается ферритной. Отметим, что аустенитные и ферритные стали закалки не принимают, так как они не имеют фазовых превращений в твердом состоянии.  [c.108]

В железоуглеродистых сталях аустенит, как стабильная структурная составляющая, существует лишь при температурах выше Ас1 В специальных легированных сталях бла годаря влиянию легирующих элементов на расширение у области, увеличению устойчивости переохлажденного аус тенита и понижению мартенситной точки аустенит может быть одной из главных структурных составляющих сталей  [c.49]


На рис. 123 показано влияние основных легирующих элементов на изменение свойств феррита. Из графиков следует, что все элементы повышают твердость феррита. При этом хром и особенно никель почти не уменьшают вязкость стали. Никель наиболее сильно снижает порог хладноломкости. Кроме того никель, хром, марганец и некоторые другие элементы, хорошо растворимые в аустените, повышают его устойчивость при охлаждении, тем самым увеличивая прокаливаемость стали. Наиболее эффективно никель и хром увеличивают прокал)1ваемость стали при их одновременном введении в сталь, т. е. при так называемом комплексном легироваинн.  [c.179]

Все легирующие элементы (за исключением кобальта) увеличивают устойчивость переохлажденного аустенита в области перлитного и бейнитного превращений и на диаграмме изотермического превращения сдвигают вправо, т. е. в сторону большего времени выдержки, кривые начала и конца распада. Причины высокой устойчивости переохлажденного аустенита в области перлитного превращения многие исследователи связывают с тем, что в результате распада легированного аустенита в перлитной области образуются феррит и легированный цементит или специальный карбид. Для образования такой ферритно-карбидной структуры между у-твердым раствором и карбидом должно пройти диффузионное перераспределение не только углерода, но и легирующих элементов. Карбидообразующие элементы переходят в карбиды, а элементы, не образующие карбидов, — в феррит. Замедление распада аустенита в перлитной зоне объясняется малой скоростью диффузии легирующих элементов в аустените и уменьшением скорости диффузии углерода под влиянием карбидообразующих элементов. Кроме того, легирующие элементы уменьшают скорость полиморфного превращения у а, которое находится в основе распада азютенита.  [c.179]

Необходимо подчеркнуть что составы аустенита и стали могут не совпадать если легирующие элементы не полностью переведены в твердый раствор при аустенитизации В этом случае нерастворенная часть легирующих элементов входит в состав карбиднои (интерметал 1ИДН0И) фазы которая иначе влияет на устойчивость аустенита По этому приведенные ниже данные о влиянии углерода и легирующих э1емеитов относятся к случаю нх растворения в аустените  [c.85]

Деформация, снижающая температуру Ас облегчает образование аустенита трения. И, М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [33]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре стали после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легиро-ванности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содфжащимися в смазке. Аустенит  [c.259]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]


На коррозионное растрескивание аустенитных сталей легирующие добавки оказывают различное влияние в зависимости от значения потенциала, который они создаю г. Коррозионное растрескивание имеет место лишь при тех значениях потенциала, когда может возникнуть активнопассивный коррозионный элемент. Многочисленные экспериментальные данные [37] показывают, что к числу элементов, которые существенно влияют на устойчивость аустенитной стали к коррозионному растрескиванию, относится прежде всего никель. Стойкость стали, содержащей 18% хрома, снижается до минимума при легировании ее никелем в количестве 8—10%. При таком содержании никеля аустенит неустойчив. С увеличением содержания никеля повышается стабильность аустенита. Кроме того, облегчается поперечное скольжение дислокаций. Это обстоятельство препятствует образованию плоских скоплений дислокаций и зарождению трещин. При содержании никеля менее 8—10% в стали присутствует а-фаза (феррит) и количество ее тем больше, чем ниже содержание никеля. Стали и сплавы, содержащие 45—47% никеля, обладают склонностью к межкристаллитной коррозии.  [c.117]

Сопоставление результатов приближенного расчета сегрегации углерода в аустените на дислокациях и их скоплениях с опытными данными о влиянии пластической деформации на снижение устойчивости аустенита в температурной области бейнитного превращения позволяет рассматривать процесс сегрегации углерода в качестве одного из реальных элементарных процессов, посредством которых пластическая деформация инициирует и ускоряет бейнитное превращение. Температурный интервал, в котором процесс сегрегации может играть существенную роль, по-видимому, ограничен сверху — температурами, выше которых отношение предельных концентраций углерода на дислокациях и в неискаженных областях кристаллической решетки Сд/С становится достаточно малым и начинают активно развиваться процессы преимущественного разрушения облаков Коттрелла и рекристаллизации ( >500— 550°) снизу — температурами, ниже которых диффузия углерода к дислокациям из удаленных от них микрообъемов резко ограничена по времени ( < 300—350° в зависимости от содержания углерода и легирующих элементов). Поэтому процесс сегрегации углерода при невысоких температурах в изотермических условиях развивается полнее, чем при непрерывном охлаждении даже с относительно невысокими скоростями.  [c.182]


Смотреть страницы где упоминается термин Аустенит влияние легирующих элементов на .устойчивость : [c.63]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.564 ]



ПОИСК



541, устойчивости 423 - Элементы

Аустенит

Влияние легирующее

Влияние легирующих элементов на устойчивость переохлажден ного аустенита

Легирующие элементы

см Элементы легирующие — Влияние



© 2025 Mash-xxl.info Реклама на сайте