Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магний Физические свойства

Продукты разрушения первичных горных пород, содержащих силикаты магния, например безводный минерал магнезит, имеет следующие физические свойства удельный вес 3,1 - 3,3 г/см, твердость по шкале МООСа составляет 3,5.  [c.210]

Титан и его сплавы по своим механическим и физическим свойствам занимают промежуточное место между легкими металлами и их сплавами (на основе алюминия и магния) и сталями. Такая высокая склонность к пассивации титана и его сплавов обеспечивает им высокую коррозионную стойкость как в приморской атмосфере, так и в морской воде.  [c.75]


Основные физические свойства магния  [c.201]

Физические свойства магния  [c.282]

От руды промышленного значения требуется, чтобы концентрация нужного металла в ней делала извлечение его технически осуществимым и экономически целесообразным. Подобная минимальная концентрация бывает различной в зависимости от химических и физических свойств металлов и их соединений, поскольку эти свойства определяют способ извлечения их из руд. Так, для меди минимальная концентрация может быть не больше 1%, для магния допустима концентрация 0,13 п (как, например, в морской воде), а для алюминия и железа концентрация металла должна быть выше 30%. Развитие технологии н изменение экономических требований непрерывно меняют уровень минимальных концентраций металлов в руде и других исходных материалах, идущих для промышленного производства. Нагляднее всего это можно показать на примере меди отходы от ее производства, которые раньше выбрасывались за ненадобностью, сейчас перерабатываются заново, поскольку технологические достижения позволяют извлекать медь при меньшем ее содержании в исходном сырье.  [c.18]

Химические и физические свойства MgO. Оксид магния — Единственное кислородное соединение магния существует только в одной модификации и кристаллизуется в кубической системе. Кристаллическую форму оксида магния называют периклазом. Она имеет решетку типа каменной соли и постоянную, равную 0,42 нм. Плотность оксида магния 3,58 г/см . Твердость периклаза 6. Температура плавления 2800°С. Теплота образования оксида магния из элементов 613 кДж/моль. Энергия решетки 39 мДж/моль. Поверхностная энергия при 0°С —  [c.139]

В таблице Периодической системы элементов Менделеева Be занимает место в одной группе с Mg, Са и Ва и по своим физическим свойствам имеет близкое сходство с Mg, а в отношении химических свойств напоминает А1. Подобно магнию, но ще в большей степени, бериллий уменьшает вязкость стекла (глазури) и способствует его кристаллизации.  [c.83]

Многие физические свойства алюминия существенно изменяются в зависимости от степени его чистоты. Так, чем чище алюминий, тем выше его температура плавления и электропроводность и ниже плотность. Однако ряд свойств алюминия можно существенно улучшить легирующими добавками магния, кремния, меди, цинка, марганца, которые повышают механические и литейные свойства алюминия и его коррозионную стойкость.  [c.315]


Пористость материалов обычно не превышает 3. .. 5 %. Ферриты представляют собой магниты из оксидов металлов (железа, цинка, кобальта, магния). При производстве ферритов особое внимание уделяют процессу подготовки шихты. Проверяют химический состав исходных компонентов и строго выдерживают расчет составляющих шихты. Порошковой металлургией удается получить высокую чистоту исходных материалов, что является первостепенным для достижения электромагнитных и других физических свойств электромагнитных изделий. Электрокон-тактные материалы изготовляют из смеси порошков тугоплавких металлов с медью и серебром. Тугоплавкие металлы (вольфрам, молибден, карбид вольфрама) служат  [c.471]

Армированные сплавы магния и алюминия находят применение в конструкциях новой авиационной техники и для глубоководных аппаратов. Эти материалы отличаются высокой прочностью при высоких температурах, могут применяться для получения специальных физических свойств (изоляционных, магнитных и т. п.).  [c.25]

При сварке неплавящимся электродом существенны различия физических свойств электродов, больше доля мощности, расходуемой в электроде, и необходимо специальное устройство для поджига дуги. При сварке переменным током для дуги характерны высокие пики напряжения повторного зажигания, особенно при сварке легких металлов и сплавов (алюминия, магния), в моменты образования катода на изделии, а также большое различие средних значений напряжения дуги прямой и обратной полярности.  [c.78]

Высокая химическая стойкость магния и его сплавов по отношению к горючим материалам, минеральным маслам, щелочам, а также особые физические свойства, например малая способность к поглощению нейтронов, отсутствие взаимодействия с ураном, хоро-щая теплопроводность, делают их перспективными для использования в различных энергетических узлах и ядерной энергетике.  [c.117]

Физические свойства. Магний — металл серебристо-белого цвета с сильным блеском. Кристаллическая структура — гексагональная, компактная с параметрами решётки о = 3, 22 А и Со = = 5,23 А.  [c.271]

Наиболее важным из его физических свойств является малый удельный вес ( 1,74) Главнейшие физические свойства магния следующие  [c.271]

Магний технический — Физические свойства 271 Магнитные анализаторы 63 Магнитные металлокерамические материалы 280 Магнитный анализ 61 Манганин 249  [c.1054]

В современном машиностроении наряду с обычной малоуглеродистой сталью широко применяют металлы и сплавы, обладающие высокими механическими или специальными физическими свойствами, такими, как жаропрочность, коррозионная стойкость и т. д. Несмотря па высокие эксплуатационные свойства этих материалов, сварка их в большинстве случаев связана с определенными трудностями. К таким металлам и сплавам относятся углеродистые и легированные стали (конструкционные и теплостойкие), высоколегированные стали (нержавеющие и жаропрочные), чугун, медь, алюминий, магний, активные металлы и их сплавы.  [c.421]

Асбестом называется ряд минералов, представляющих собой водные-силикаты, содержащие окись магния, кремнезема и воду, имеющих волокнистое строение, обладающих способностью расщепляться на волокна и отличающихся по химическому составу и физическим свойствам.  [c.34]

Рассмотрено кристаллическое строение металлов, воздействие на их структуру и свойства процессов кристаллизации, пластической деформации и рекристаллизации. Анализируются фазы, образующиеся в сплавах, и диаграммы состояния двойных и тройных систем. Большое внимание уделено теории и технологии термической и химико-термической обработки стали, описанию конструкционных, инструментальных, нержавеющих и жаропрочных сталей, сплавов с особыми физическими свойствами, а также сплавов на основе титана, меди, алюминия, магния и других металлов.  [c.2]

Цветные металлы и сплавы применяют в настоящее время реже, чем железо и его сплавы—стали и чугуны. Это объясняется отчасти дефицитностью некоторых цветных металлов и большей сложностью их производства. Они стоят дороже черных металлов, и поэтому везде, где это возможно, цветные металлы заменяют черными. Однако есть ряд отраслей промышленности, потребляющих большое количество цветных металлов и сплавов в связи с их физическими свойствами, — такими как малый удельный вес, высокие электро- и теплопроводность и др. Шестым пятилетним планом предусмотрено увеличение в 1960 г. по сравнению с 1955 г. производства рафинированной меди примерно на 60%, алюминия в 2,1 раза, свинца на 42%, цинка на 77%, никеля на 64%, молибденовой продукции в 2 раза, вольфрамовых концентратов на 57%, магния товарного в 2,1 раза. Значительно расширяется производство титана и редких металлов — германия, циркония, ниобия, тантала и др.  [c.228]


Физические свойства металлов и сплавов определяются удельным весом, коэффициентами линейного и объемного расширения, электропроводностью, теплопроводностью, температурой плавления и т.д. Например, в зависимости от технических требований к конструкции детали подбирают сплавы, обладающие теми или иными физическими свойствами, например низким удельным весом (сплавы алюминия и магния), высокой температурой плавления (сплавы титана, ниобия, вольфрама), хорошей теплопроводностью (сплавы меди) и т. д.  [c.12]

Магний - серебристо-белый металл. Важнейшее его физическое свойство —малая плотность, равная 1,738 г/см (при 20 °С). В свободном атоме магния имеется ядро и двенадцать электронов. Два электрона, находящихся на внешней орбите атома 3 5, легко могут быть оторваны, что приводит к образованию иона Mg , поэтому магний двухвалентен во всех известных соединениях.  [c.124]

Важнейшее физическое свойство магния— малая плотность, равная 1,738 г/см (при 20° С) и 1,584 г/см в точке плавления в жидком состоянии. Заслуживает внимания и значительная упругость паров магния при температуре выше 500° С (табл. 48).  [c.370]

Магний характеризуется незначительным удельным весом (1,74) и является наиболее легким из всех технических металлов. Благодаря этому сплавы на магниевой основе характеризуются низким удельным весом. Согласно ГОСТ 804-41 промышленное применение имеют две марки магния, химический состав и физические свойства которых приведены в табл. 226.  [c.434]

Физические свойства. Магний — металл серебристо-белого цвета с сильным блеском. Кристаллическая структура — гексагональная, компактная с пара-  [c.312]

Главнейшие физические свойства магния следующие  [c.312]

Физические свойства отдельных компонентов цветных сплавов приведены в табл. 52 В настоящее время для фасонного литья находят применение главным образом сплавы, основой которых служат магний, алюминий, медь и цинк. Меньшее применение для фасонного литья находят металлы на основе никеля, серебра, олова и свинца. В ближайшее время можно ожидать распространения сплавов на основе марганца.  [c.40]

ФИЗИЧЕСКИЕ СВОЙСТВА МАГНИЯ  [c.441]

Физические свойства 441 Магний первичный в чушках —  [c.544]

Сплав, содержащий 16 % Сг, 7 % Fe и 76 % Ni (торговое название инконель 600), несколько менее жаростоек, чем нихром V, но обладает такими же благоприятными физическими свойствами, прост в изготовлении и хорошо сваривается. На воздухе его можно использовать при температурах до 1100°С. В некоторых печах устанавливают электрические трубчатые нагреватели из этйго сплава. Проходящая внутри трубки проволока из сплава 20% Сг—Ni изолирована от внешней трубки порошкообразным спеченным оксидом магния. Благодаря высокому содержанию никеля и большой прочности (образование карбидов или нитридов никеля идет медленно) этот сплав часто применяют как конструкционный материал для печей цементации и азотирования.  [c.208]

В результате исследования микроструктуры, некоторых механических и физических свойств, а также антифрикционных свойств ряда сплавов системы алюминий—сурьма, как бинарных, так и более сложных (содержащих в своем составе магний, свинец и модификатор в виде смеси солей НаС1 — НаР) нами был выделен оптимальный сплав АСС-6-5 состава сурьма 6о/о свинец 5о/о магний 0.5 /о, алюминий—остальное, модификатор — смесь солей ЫаЕ — Na I.  [c.333]

МАГНИТНАЯ ПЛЕНКА — слой магн. вещества (обычно феррО или ферримагнетнка) толщииоя от долей нанометра до неск. микрометров с рядом особенностей атомно-кристаллич. структуры, маги., электрич. и др. физических свойств, отличающих пленку от массивных магнетиков.  [c.658]

К легким металлам относятся металлы, обладающие малой плотностью. Важ ейшимн из них являются алюминий, магний, бериллий. Основные физические свойства этих металлов приведены в табл. 8.32.  [c.295]

Уникальным свойством этнх сплавов является изменение характера кристаллической решетки вследствие сравнительно большого содержания лития. Вместо типичной для магния гексагональной структуры литиевомагниевые сплавы кристаллизуются в кубической объемноцентрированной решетке. Литиевомагниевые сплавы отличаются легкой обрабатываемостью и превосходными физическими свойствами. Однако их применение крайне ограничивается быстрой потерей прочности при нагревании выше 150 .  [c.366]

Согласно данным Асмана 14], при образовании твердых растворов растворимость лития в алюминии составляет 3,5% при температуре плавления и 2,2% при комнатной температуре. Влияние небмьших количеств лития на физические свойства алюминия или богатых им сплавов весьма сходнО с тем, которое оказывает магний, особенно если в сплаве содержится кремний. Однако ввиду более низкого эквивалентного веса лития для достижения такого же эффекта в отношении физических свойств сплава литий добавляется в меньших количествах, чем магний.  [c.366]

При добавлении к свинцу 0,05% или меньшего количества лития значительно улучшаются литейные и физические свойства свинца, который становится более вязким и твердым, сохраняя удовлетворительную пластичность. В то же время значительно повышаются предел прочности при растяжении и модуль упругости. Кроме того, присутствие лития в свинце обеспечивает более мелкозернистую структуру и замедляет рекристаллизацию. Гарре и Мюллер (391 сравнивали влияние добавок различных элементов, например меди, сурьмы, олова, никеля, цинка и магния, с влиянием добавок лития на размер зерен и твердость свинца. Результаты, полученные этими исследователями, ясно показывают, что из всех испытанных элементов литий придает свинцу наиболее мелкозернистую структуру и наибольшую твердость. Кох [72] предложил применять сплавы лития и свинца, особенно те, которые содержат небольшие добавки кадмия или сурьмы, для изготовления кабельных оболочек. Он установил, что свинец, содержащий 0,005% лития, имеет значительно более высокий предел прочности при растяжении по сравнению с чистым свинцом.  [c.367]


В течение ряда лет предпринимались попытки использовать свойства литня, так же как и свойства магния, для улучшения качеств чугуиов. Было найдено, что добавка к чугуну небольших количеств лития до некоторой степени улучшает его физические свойства. Однако за последние пять лет в связи с развитием производства чугуна с шаровидным графитом было получепо много доказательств, что добавки лития к чугуну облегчают получение сфероидальной структуры, причем для получения тех же свойств, что и в случае применения магния, требуются меньшие добавки литня. Кроме того, добавление лития не сопровождается бурной реакцией, в то время как магний во избежание бурной реакции приходится добавлять вместе с медью или никелем в виде сплавов 80% меди или инкеля и 20% магния 125 — 27, 111, 1251.  [c.368]

Применение органических веществ. Образование накипи в выпарных аппаратах для морской воды можно предотвратить с помощью различных органических веществ, применяемых иногда в смеси с неорганическими веществами (например, полифосфатами). К числу таких органических веществ относятся крахмал, сульфаты и альгинаты (alginates) лигнина, реже — поверхностно-активные вещества, действие которых основано на способности изменять форму кристаллов накипеобразующих соединений и таким образом влиять на физические свойства накипи. Например, натриевая соль динафтилметандисульфокислоты, которую при дозах 20—30 мг л эффективно применяют для контроля за образованием накипи в выпарных аппаратах для морской воды, работающих при атмосферном давлении, по-видимому, способствует тому, что гидроокись магния вместо порошкообразного непрерывно увеличивающегося отложения образует гладкую, не сцепленную с поверхностью металла накипь, которая отслаивается при достижении критической толщины. В смеси, рекомендуемой Морским министерством Великобритании и предназначенной для этой же цели, применяют другой компонент— четырехнатриевую соль ЭДТА. Она действует как изолирующий реагент, т. е. образует комплексное соединение с медью, которая, по-видимому, способствует сцеплению накипи с поверхностью металла.  [c.164]

Предплавлеиие, предсказанное Борелиусом, найдено в нескольких органических материалах и нескольких тио-цианатах происходит предварительный распад структуры перед плавлением [559]. Уже говорилось об увеличении концентрации вакансий в щелочных металлах ниже точки плавления. Карпентер [562, 563J сообщает об аномальном поведении удельной теплоемкости у лития, калия и натрия в интервале температур на 50— 100 град ниже точки плавления, возможно, вызываемом образованием вакансий. Сообщается о подобной же странности в физических свойствах висмута, цинка, кадмия [565], олова, кадмия [566], магния [566, 567], индия, калия [568] и алюминия, золота и серебра [569]. Несомненно, некоторые из этих аномалий связаны с местным плавлением, вызываемым примесями [573, 574] (образование частиц жидкости в твердой фазе не представляет проблемы, так как при этом увеличивается энтропия), которые стремятся скопиться в уже отчасти разупорядо-ченных местах решетки (дислокации и скопление дефектов).  [c.159]

Сырьем для производства портландцемента могут служить различные виды известковых пород известняк, мел, известковый туф, известняк-ракущечник, мергелистый известняк, мергель и т. п. Наиболее распространенными видами карбонатного сырья являются известняк и мел. Наряду с глинистыми примесями эти породы содержат и примеси углекислого магния, кварца, гипса и других веществ. Глина является необходимой составной частью сырья, поэтому примесь ее не снижает качества известковых пород. Содержание же в этих породах MgO и SO3 должно быть ограничено, так как они в большом количестве вредно влияют на портландцемент примесь кварцевых зерен хотя и не является вредной, но затрудняет технологический процесс. В производстве портландцемента большое значение имеют и физические свойства известковых пород, главным образом твердость, определяющая выбор того или иного дробильного или помольного агрегата.  [c.120]

Рассмотренные основные закономерности процесса спекания в твердой фазе в полной мере относятся к спеканию однокомпонентных систем. Условия проведения процесса (в первую очередь температура) определяются химическими и физическими свойствами порошков природой и чистотой металла порошка, размером и формой частиц, состоянием кристаллической решетки и т. п. Как уже указывалось, частицы порошка покрыты адсорбированными газами, пленками окислов и смазки или связки, вводимых в шихту. Порошки трудновосстанавлива-емых металлов (хрома, алюминия, магния и др.), пленка окислов которых весьма устойчива, очень трудно поддаются спеканию даже при относительно высоких температурах.  [c.313]

Прочность Се, Ей и Yb характеризуется более низкими значениями. Это согласуется с общим представлением о сходстве строения электронных оболочек и физических свойств металлов. Цериевая подгруппа отличается [60, 257] низкими прочностными свойствами, близкими к свойствам магния, а тербиевая и иттриевая подгруппы близки по характеристикам прочности к цирконию и титану. Это подтверждается и нашими данными, полученными в связи с исследованиями температурно-скоростных  [c.99]

Некоторые физические свойства титана отличаются от аналогичных свойств широко распространенных конструкционных материалов. При температуре 882° С титан претерпевает кристаллографическое превращение выше этой температуры металл имеет о. ц. к. решетку, называемую Р-фазой, а ниже — г. п. у. решетку, известную как а-фаза. Последняя характеризуется отношением с а=1,587, что значительно меньше, чем у других металлов с гексагональной решеткой, таких как магний, цинк и кадмнй. Это означает наличие большего числа плоскостей скольжения, по которым может происходить деформация, и действительно высокочистый титан при комнатной температуре является сравнительно пластичным металлом. Допустимая деформация между отжигами составляет более 95%. Во многих сплавах с помощью фазового превращения можно получать некоторое повышение прочности, но это достигается ценой уменьшения пластичности. Таким образом, технически чистый титан достаточно мягок и легко поддается холодной штамповке, а более высокопрочные сплавы хорошо обрабатываются ковкой. Обработка резанием осуществляется с помощью обычного инструмента, но при меньших скоростях, чем для большинства других металлов и сплавов. Сварка титана и большинства его сплавов может производиться аргоно-дуговым методом прн защите аргоном обеих сторон шва. Основные физические свойства титана таковы  [c.187]


Смотреть страницы где упоминается термин Магний Физические свойства : [c.564]    [c.596]    [c.45]    [c.59]    [c.336]    [c.2]   
Чугун, сталь и твердые сплавы (1959) -- [ c.441 ]



ПОИСК



Магний

Магний Свойства

Магний Свойства механические и физические

Магний деформированный — Свойств жидкий — Физические свойств

Магний технический — Физические свойства

Свойства Физические свойства

Свойства физические

Физические ПТЭ - Физические свойства

Физические свойства алюминия высокой магния

Физические свойства алюминия высокой магния жидкого



© 2025 Mash-xxl.info Реклама на сайте