Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пробой тепловой

Тепловой пробой. Тепловой пробой возникает в том случае, когда количество теплоты, выделяющейся в диэлектрике за счет диэлектрических потерь, превышает количество теплоты, которое может рассеиваться в данных условиях при этом нарушается тепловое равновесие, а процесс приобретает лавинообразный характер.  [c.69]

При выборе металлического материала для аппаратуры и машии, работающих при воздействии высоких температур, необходимо учитывать те изменения структуры и свойств, которые они при этом претерпевают. При высоких температурах происходит интенсивное окисление поверхности металлов, в особенности при воздействии на поверхность горячих газов, и происходит понижение прочности металлов, в результате чего обычные характеристики механических свойств (о и 0. ) уже не всегда являются показательными. Следует знать, что при длительном пребывании стали (исчисляемом сотнями и тысячами часов) в интервале температур 40Э— 00 в ней возможно возникновение тепловой хрупкости. Последняя выявляется ударной пробой. Тепловая хрупкость зависит от времени выдержки, химического состава стали и ее термообработки. В углеродистой стали тепловая хрупкость может возникнуть в том случае, когда в условиях эксплоатации она претерпевает пластическую деформацию. С точки зрения термической обработки закалка с последующим высоким отпуском тормозит возникновение тепловой хрупкости.  [c.80]


Электрическая прочность твердых диэлектриков практически не зависит от температуры до некоторого ее критического значения, когда наблюдается заметное снижение электрической прочности. В этом случае наступает тепловой пробой, который связан с нагревом изоляции в электрическом поле. Процесс идет следующим образом. После подачи напряжения на диэлектрик в нем начинает выделяться теплота потерь, и он разогревается. Повышение температуры приводит к росту потерь, а следовательно, к еще большему разогреву. В конце концов, в диэлектрике происходят существенные изменения (расплавление, обугливание и другие процессы, в зависимости от природы материала) и его собственная электрическая прочность снижается настолько, что происходит пробой. Тепловой пробой может иметь локальный характер, при котором средняя температура всего объема изолятора существенно не изменяется. Таким образом, тепловой пробой существенно зависит от отвода выделяющегося в диэлектрике тепла в Окружающую среду, поэтому электрическая прочность при тепловом пробое является характеристикой не только материала, но и самого изделия. Пробивное напряжение при тепловом пробое существенно зависит от времени приложения напряжения. Если это время невелико, то диэлектрик не успевает разогреться и пробой не наступает. С ростом частоты электрического напряжения и ростом окружающей температуры пробивное напряжение уменьшается.  [c.271]

Механизм пробоя диэлектриков может иметь различный характер. Основными видами пробоя твердых диэлектриков являются электрический и тепловой. Электрический пробой представляет собой разрушение диэлектрика силами электрического поля и сопровождается образованием электронных лавин. Тепловой пробой обусловлен нагревом диэлектрика до критической температуры вследствие диэлектрических потерь при нарушении в диэлектрике теплового равновесия. Значение ир при электрическом пробое составляет примерно 100— 1000 МВ/м, а при тепловом — 1 — 10 МВ/м.  [c.543]

В некоторых опытах, как и при выпечке хлебобулочных изделий, базовые элементы закладывались на различной глубине заготовки. Изучение кинетики тепловых потоков по слоям показало, что протекают волнообразные процессы, причем отдельные горизонтальные слои в связи со сдвигом фазы и разным значением амплитуды волн можно рассматривать как участки адиабатического калориметра с направленным транзитом или накоплением энергии. Это позволяет применить методику комплексного определения ТФХ, разработанную для лабораторных условий с отбором пробы, непосредственно в процессе выпечки изделий [56].  [c.154]


Высокие диэлектрические потери приводят к разогреву и тепловому пробою диэлектриков в сильных электрических полях, снижению добротности и избирательности колебательных контуров. В связи с этим стремятся снизить tgS диэлектрических потерь. Они могут быть следующих видов потери на электропроводность, релаксационные потери (включая миграционные), резонансные и ионизационные потери.  [c.107]

Пробой газа обусловливается явлением ударной и фотонной ионизации. Пробой жидких диэлектриков происходит в результате ионизационных и тепловых процессов. Одним из главнейших факторов, способствующих пробою жидкостей, является наличие в них посторонних примесей. Пробой твердых тел может вызываться как электрическим, так и тепловым процессами, возникающими под действием поля.  [c.116]

Из изложенного следует, что пробой газов - явление электрическое. Поэтому все численные результаты экспериментов по пробою газов относятся к максимальным (амплитудным) значениям напряжения. Поскольку в разрушении жидких и особенно твердых диэлектриков существенную роль играют тепловые процессы, то при приложении к диэлектрикам переменного напряжения численные значения пробивного напряжения относятся к действующим.  [c.117]

Тепловой пробой обусловлен нарушением теплового равновесия диэлектрика вследствие диэлектрических потерь.  [c.124]

Следовательно, и р снижается на высоких частотах. Аналогично и р при тепловом пробое зависит от температуры, снижаясь с ее повышением за счет роста tgS [см.(4.55)]. По указанным причинам с повышением частоты / или температуры Т может изменяться механизм пробоя диэлектрика при низких/ или Г, когда напряжение теплового пробоя и рт велико, происходит электрический пробой, а при высоких / или Г, когда Опр.т снижается до значений, меньших напряжения электри -  [c.125]

На рис. 2-30 наглядно видно тепловое воздействие при электротепловом пробое образца каменной соли, пробитого в двух местах. Одно место пробоя имело форму выплавленной воронки, второе выплавилось в значительных размеров отверстие. Иногда при электротепловом пробое кристаллических неорганических диэлектриков происходит незначи-  [c.76]

Естественно, что по сравнению с тепловым электрический пробой развивается за очень короткий промежуток времени, порядка 10 —10 с необходимо лишь достижение определенной напряженности электрического поля.  [c.78]

Электроизоляционные целлюлозные бумаги и картоны, пропитанные нефтяными маслами и хлорированными дифенилами (совол, совтол), обладают весьма высокой н стабильной электрической прочностью. Электрическая прочность этих целлюлозных материалов почти не уменьшается даже при длительном тепловом старении в масле и окислении последнего при условии, что неизбежный при этом рост tg 6 не приводит к электротепловому пробою и не происходит увлажнения волокнистого материала.  [c.178]

При тепловом пробое п,, уменьшается с ростом температуры окружающей среды (рис. 5.39, в). Уменьшение вызывается ростом теплоты, выделяющейся в образце за счет диэлектрических потерь, и уменьшением теплоты, отводимой от образца в окружающую среду. На постоянном напряжении диэлектрические потери вызываются электропроводностью и определяются электрическим сопротивлением образца. Для плоского конденсатора их рассчитывают по формуле U /R --= U l pjh). На переменном напряжении с уче-  [c.180]

Пробой стекол вызывается электрическими и тепловыми процессами. При постоянном напряжении электрическая прочность стекла весьма велика и достигает 500 МВ/м, а при увеличении температуры резко снижается. В переменном электрическом поле электрическая прочность стекол составляет 17—80 МВ/м.  [c.237]

В результате этого процесса происходит пробой газов, который совершается мгновенно, т. е. за время порядка 10 сек. Этот пробой на основе ударной ионизации носит название электрического пробоя, он не зависит от времени приложения напряжения, не связан с нагревом материала, как тепловой пробой, так как ударная ионизация происходит мгновенно и зависит только от критической напряженности поля. Электрический пробой типичен для газов и неполярных других диэлектриков.  [c.30]


Таким образом, в жидких, диэлектриках возможны следующие виды пробоя 1) электрический пробой вследствие ударной ионизации, происходящий в чистых неполярных жидкостях 2) тепловой пробой, вследствие резко возрастающих диэлектрических потерь и нагрева жидкости, особенно в местах наибольшего скопления примесей 3) ионизационный пробой, вследствие ионизации газовых включений в жидкости, роста диэлектрических потерь.  [c.33]

Пробивная напряженность электрического пробоя значительно меньше зависит от температуры, чем при тепловом пробое.  [c.37]

Тепловой пробой является следствием уменьшения активного сопротивления диэлектрика под влиянием нагрева в электрическом поле, что приводит к росту активного тока и дальнейшему увеличению нагрева диэлектрика вплоть до его термического разрушения.  [c.58]

J-5. ТЕПЛОВОЙ И ЭЛЕКТРОХИМИЧЕСКИЙ ПРОБОЙ ТВЕРДЫХ ДИЭЛЕКТРИКОВ  [c.69]

Как показано на рис. 4-10, элект])ическая прочность при тепловом пробое уменьшается с ростом температуры.  [c.69]

Рассмотрим методику упрощенного расчета пробивного напряжения при тепловом пробое. Пусть пластинка однородного диэлектрика, обладающего потерями, находится между двумя электродами, как показано на рис. 4-П. К электродам от достаточно мош,кого источника переменного тока прикладывается напряжение, которое можно увеличивать до пробивного. Рассеиваемая в диэлектрике мощность будет определяться выражением (3-S).  [c.69]

В общем случае тепловой пробой — более сложное явление, чем было рассмотрено. По толщине диэлектрика получается перепад т1 .мпературы, средний слой оказывается нагретым выше, чем прилегающие к электродам, сопротивление первого резко падает, что ведет к искажению электрического поля и повышенным градиентам на-п )яжения в поверхностных слоях. Играет роль также и теплопроводность материала электродов. Все это способствует пробою образцов при более низких напряжениях, чем получаемые из приближенного расчета.  [c.71]

Теплопроводность. Теплопроводность — один из видов переноса теплоты от более нагретых частей к менее нагретым, приводящий к выравниванию температуры. Практическое значение теплопроводности объясняется тем, что теплота, выделяющаяся вследствие потерь мощности в окруженных электрической изоляцией проводниках в магнитопроводах, а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы. Теплопроводность влияет на электрическую прочность при тепловом пробое (см. 4-5) и на стойкость материала к импульсным тепловым воздействиям. Теплопроводность материалов характеризуют коэффициентом теплопроводности Vt (табл. 5-1), входящим в уравнение Фурье  [c.84]

Измерение диэлектрических потерь (tg 5 ) может иметь значеаие с двух точек, зрения а) проверки надежности изоляции по отношению к тепловому пробою (тепловая устойчивость) и б) проверки общего стареиия или увлажнения изо-,яции.  [c.334]

Очаги внутренней ионизации в порах действуют разрушающим образом на твердый, основной компонент изоляции за счет бомбардировки ионами и электронами, вызывающими эрозию, за счет теплового воздействия и воздействия озона ичжислов азота. Разные материалы проявляют различную стойкость против этих воздействий. Как правило, неорганические диэлектрики проявляют большую стойкость, чем органические, довольно сильно отличающиеся в этом отношении друг от друга. При ионизационном пробое начальной стадией является ионизация в порах (внутренняя корона), второй — завершающей — разрушение диэлектрика под  [c.84]

Ионизационный пробой возникает в результате действия на диэлектрик частичных разрядов в газовых порах. Разрушительное воздействие частичных разрядов на диэлектрик обусловлено многими факторами. Например, полимерные диэлектрики под действием частичных разрядов окисляются образующиеся в результате частичных разрядов электроны и ионы, бомбардируя стенки пор, прои.зводят их эрозию, т. е. механически разрушают образующиеся оксиды азота и озон химически разрушают полимер наконец, разрушают стенки поры тепловое воздействие перегретого разрядом газового включения.  [c.171]

Электротермомеханический пробой является разновидностью электротеплового и наблюдается в хрупких диэлектриках, например в керамиках, содержащих поры. Вблизи ионизированных газовых включений образуются перегретые области диэлектрика. Их тепловое расширение больше, чем у менее нагретых областей. В результате в диэлектрике возникают механические напряжения, которые приводят к образованию в хрупком материале микротрещин и в конечном итоге к механическому разрушению.  [c.171]

В жидкости, содержащей газы, пробой начинается с ионизации газовых включений, В результате ионизации температура стенок газовых включенйй возрастает, что приводит к вскипанию микрообъемов жидкости, примыкающих к включению. Объем газа увеличивается, включения сливаются, образуя между электродами мостик, по которому проходит разряд в газе. Причиной пробоя может стать трудноудаляемый слой газа толщиной 10- м на электродах, которые используются для определения Е р. Газы имеют малый коэффициент теплопроводности. Следовательно, слой газа на электродах образует участок с большим тепловым сопротивлением. В результате температура близ границы раздела жидкость — газ повышается, что приводит к вскипанию жидкости, а далее и к ее пробою. В процессе пробоя жидкости с большим содержанием газа (газовые включения), которые первоначально имеют сферическую форму, в электрическом поле деформируются. При дес юрмации они превращаются в эллипсоиды вращения, удлиняются и сливаются образуя сплошной газовый канал между электродами, что приводит К пробою. Для жидких диэлектриков с газовыми включениями цр увеличивается с ростом давления рис. 5.35,а), так как увеличиваются температура кипения и растворимость газа в жидкости, что затрудняет рост объема газовых включений.  [c.176]


Пробой твердых диэлектриков. Р.1звитие той или иной формы пробоя зависит от природы твердого диэлектрика и условий определения электрической прочности. При испытар иях на импульсах с длительностью 10 " — Ю- с в условиях, когда отсутствуют раз-рнды у краев электродов, имеет место электрический пробой образца. Если проводимость такого диэлектрика велика и резко зависит от температуры, то при выдержке этого же образца под напряжением в течение 10 — 10 - с в нем развивается тепловой пробой. При воздействии на образец в течение длительного времени  [c.178]

Ионизирующие и.члучения большой мощности вызывают нагрев вещества и уменьшают его теплопроводность, что снижает ,> ири тепловом пробое диэлектрика. При облучении в диэлектрике могут наблюдаться газовыделение и ионизация газа в порах, процессы ускоряют разрушение и снижают электрическую прочность диэлектрика, как и частичные разряды, возникающие в диэлектрике В электрическом поле.  [c.182]

Пробой воздуха и других газов следует рассматривать с точки зрения Таунсенда, по теории ударной ионизации. По этой теории небольшое количество содержащихся в газе положительных и отрицательных ионов и электронов, находящихся как и нейтральные молекулы в беспорядочном движении, при наложений поля получает добавочную скорость и частично перемещается в направленш действия поля. Каждая заряженная частица газа при этом приобретает, помимо тепловой, дополнительную электрическую энергию  [c.29]

Жидкие диэлектрики отличаются значительно более высокой электрической прочностью, чем газы, несмотря на большую зависимость электрических свойств жидкостей от загрязнений, которые в, газообразном состоянии почти не изменяют электрической прочности газа. Основной причиной более высокой прочности жидких диэлектриков является их более высокая (в 2000 раз) плотность и значительно меньшие расстояния между молекулами. Однако примеси полярных жидких (эмульсии) или твердых (суспензии) веществ порождают новые формы теплового НЛП ноннзацнонпого (в случае газообразных включений) иробоя, которые снижают пробивное напряжение даже неполярных жидкостей, у которых в чистом виде пробой носит характер ударной, ионизации, как у газов, но вследствие значительно меньшей длины свободного.пробега ионов для развития процесса ударной ионизации требуется более высокое напряжение.  [c.32]

Явление теплового пробоя сводится к разогреву материала в электрическом поле до температур, соответствующих расплавлению и обугливанию. Электрическая прочность при тепловом пробое язляется характеристикой не только материала, но и изделия из него, тогда как электрическая прочность при электрическом пробое служит характеристикой самого материала. Пробивное напряжение, обусловленное нагревом диэлектрика, связано с частотой напряжения, условиями охлаждения, температурой окружающей среды. Кроме того, электротепловое пробивное напряжение зависит от нагревостойкости материала органические диэлектрики (например, полистирол) имеют более низкие значения электротеп-ловых пробивных напряжений, чем неорганические (кварц, керамика), при прочих равных условиях вследствие их малой нагрев -стойкости.  [c.69]

Электрохимический пробой. Электрохимический пробои элек1ротехнических материалов имеет существенное значение при повышенных температурах и высокой влажности воздуха. Этот вид пробоя наблюдается при постоянном и переменном напряжениях низкой частоты, когда в материале развиваются процессы, обуою-влипающие необратимое уменьшение сопротивления изоляции (электрохимическое старение). Кроме того, электрохимический пробой может иметь место при высоких частотах, если в закрытых порах материала происходит ионизация газа, сопровождающаяся тепловым эффектом и восстановлением, например в керамике, оксидов металлов переменной валентности  [c.72]


Смотреть страницы где упоминается термин Пробой тепловой : [c.285]    [c.299]    [c.125]    [c.125]    [c.72]    [c.76]    [c.318]    [c.170]    [c.26]    [c.37]    [c.66]    [c.70]    [c.73]   
Электротехнические материалы (1976) -- [ c.71 , c.77 ]

Диэлектрики Основные свойства и применения в электронике (1989) -- [ c.51 ]

Материалы в радиоэлектронике (1961) -- [ c.95 , c.106 , c.109 ]

Электротехнические материалы Издание 3 (1955) -- [ c.100 ]

Электротехнические материалы Издание 3 (1976) -- [ c.71 , c.77 ]



ПОИСК



Пробои

Пробой

Тепловой н электрохимический пробой твердых диэлектриков

Тепловой пробой твердых диэлектриков

Электротепловой (тепловой) пробой



© 2025 Mash-xxl.info Реклама на сайте